Loading…
Application of Mg-MOF-loaded gelatin microspheres with osteogenic, angiogenic, and ROS scavenging capabilities in bone defect repair
The management of bone defects, particularly those with irregular geometries resulting from osteoporotic fractures, remains fraught with challenges. Microspheres have emerged as a promising vehicle for tissue engineering, distinguished by their controlled release, safety, and ease of application. Va...
Saved in:
Published in: | International journal of biological macromolecules 2024-11, Vol.280 (Pt 2), p.135721, Article 135721 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The management of bone defects, particularly those with irregular geometries resulting from osteoporotic fractures, remains fraught with challenges. Microspheres have emerged as a promising vehicle for tissue engineering, distinguished by their controlled release, safety, and ease of application. Various bioactive components are integrated into microspheres to improve their performance. Metal-organic frameworks, formed from metal ions interconnected by organic ligands, are increasingly utilized in tissue engineering. Specifically, magnesium-based MOFs are notable for their broad applicability; Mg2+ ions are instrumental in bone reconstruction and repair, facilitating osteogenesis, angiogenesis, antibacterial effects, and anti-inflammatory properties. Mg-MOF was synthesized using magnesium chloride and gallic acid, and it was incorporated into gelatin microspheres to create Gel@Mg-MOF composite microspheres. Leveraging gelatin's biocompatibility, controlled release, and biodegradability, the composites' biocompatibility was evaluated through toxicity and adhesion assays. Moreover, the osteogenic and angiogenic potentials of the Gel@Mg-MOF microspheres were assessed, alongside their capacity for ROS scavenging. Results suggest that controlled Mg2+ release from Gel@Mg-MOF microspheres promotes osteogenic activity in RBMSCs and enhances angiogenic potential in HUVECs. Additionally, the gallic acid-containing composite microspheres exhibited antioxidative properties. Collectively, the findings suggest that Gel@Mg-MOF microspheres could provide effective support for bone defect repair, with potential for clinical deployment. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.135721 |