Loading…

Crystal Structure and Molecular Mechanism of Isocitrate Lyase from Chloroflexus aurantiacus

Chloroflexus aurantiacus is a green, nonsulfur bacterium that employs the 3-hydroxypropionate cycle to grow, using carbon dioxide/bicarbonate as its primary carbon source. Like most bacteria, it possesses the glyoxylate cycle, facilitated by malate synthase and isocitrate lyase (ICL), allowing a “tr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2024-10, Vol.72 (41), p.22702-22709
Main Authors: Lee, Seul Hoo, Park, Jiyoung, Kim, Kyung-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chloroflexus aurantiacus is a green, nonsulfur bacterium that employs the 3-hydroxypropionate cycle to grow, using carbon dioxide/bicarbonate as its primary carbon source. Like most bacteria, it possesses the glyoxylate cycle, facilitated by malate synthase and isocitrate lyase (ICL), allowing a “tricarboxylic acid cycle” bypass. C. aurantiacus also harbors ICL, an enzyme that catalyzes reversible isocitrate cleavage into glyoxylate and succinate. This study presents the crystal structures of C. aurantiacus-derived ICL (CaICL), in its Mg2+-bound and Mn2+ and isocitrate-bound forms, elucidating its substrate-binding mechanism and catalytic loop dynamics. CaICL forms a homotetramer and interacts with isocitrate via critical active-site residues, revealing its catalytic mechanism. The stabilization of the catalytic loop and adjacent terminal regions upon isocitrate binding underscores its functional significance. These findings advance our understanding regarding ICL enzymes, offering a basis for future investigations into their biological roles and potential applications.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.4c05677