Loading…
Vitamin K2 alleviates dextran sulfate sodium-induced colitis via inflammatory responses, gut barrier integrity, and the gut microbiota in mice
Vitamin K2 (VK2) has been shown to have potential benefits in improving intestinal integrity, but its potential and mechanisms for alleviating intestinal inflammation are still unclear. The present results showed that VK2 supplementation significantly alleviated the symptoms of colitis and maintaine...
Saved in:
Published in: | International journal of biological macromolecules 2024-11, Vol.280 (Pt 4), p.136091, Article 136091 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vitamin K2 (VK2) has been shown to have potential benefits in improving intestinal integrity, but its potential and mechanisms for alleviating intestinal inflammation are still unclear. The present results showed that VK2 supplementation significantly alleviated the symptoms of colitis and maintained the intestinal barrier integrity. In addition, VK2 significantly down-regulated the mRNA expression levels of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α, while up-regulated the mRNA expression level of anti-inflammatory cytokines such as IL-10. Moreover, VK2 significantly alleviated DSS-induced intestinal epithelial barrier dysfunction by maintaining the tight junction function. Furthermore, VK2 also regulated DSS-induced gut microbiota dysbiosis by reshaping the structure of gut microbiota, such as increasing the relative abundance of Firmicutes, Euryarchaeota, Prevotellaceae, and Prevotella and reducing the relative abundance of Proteobacteria, Rikenellaceae, Enterobacteriaceae, Acetatifactor, and Alistioes. In conclusion, these results indicated that VK2 effectively alleviates DSS-induced colitis in mice by modulating the gut microbiota. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.136091 |