Loading…
A fluorite-structured HfO2/ZrO2/HfO2 superlattice based self-rectifying ferroelectric tunnel junction synapse
A self-rectifying ferroelectric tunnel junction that employs a HfO2/ZrO2/HfO2 superlattice (HZH SL) combined with Al2O3 and TiO2 layers is proposed. The 6 nm-thick HZH SL effectively suppresses the formation of non-ferroelectric phases while increasing remnant polarization (Pr). This enlarged Pr mod...
Saved in:
Published in: | Materials horizons 2024-10, Vol.11 (21), p.5251-5264 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A self-rectifying ferroelectric tunnel junction that employs a HfO2/ZrO2/HfO2 superlattice (HZH SL) combined with Al2O3 and TiO2 layers is proposed. The 6 nm-thick HZH SL effectively suppresses the formation of non-ferroelectric phases while increasing remnant polarization (Pr). This enlarged Pr modulates the energy barrier configuration, consequently achieving a large on/off ratio of 1273 by altering the conduction mechanism from off-state thermal injection to on-state Fowler–Nordheim tunneling. Moreover, the asymmetric Schottky barriers at the top TiN/TiO2 and bottom HfO2/Pt interfaces enable a self-rectifying property with a rectifying ratio of 1550. Through calculations and simulations it is found that the device demonstrates potential for achieving an integrated array size exceeding 7k while maintaining a 10% read margin, and shows potential for application in artificial synapses for neuromorphic computing with an image recognition accuracy above 92%. Finally, the self-rectifying behavior and device-to-device variation reliability are confirmed in a 9 × 9 crossbar array structure. |
---|---|
ISSN: | 2051-6347 2051-6355 2051-6355 |
DOI: | 10.1039/d4mh00519h |