Loading…
Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL
Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastatin...
Saved in:
Published in: | Theoretical and applied genetics 2024-10, Vol.137 (10), p.246, Article 246 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3 |
container_end_page | |
container_issue | 10 |
container_start_page | 246 |
container_title | Theoretical and applied genetics |
container_volume | 137 |
creator | Gong, Biran Gao, Jing Xie, Yangqiu Zhang, Hao Zhu, Wei Xu, Lili Cheng, Yiran Wang, Yi Zeng, Jian Fan, Xing Sha, Lina Zhang, Haiqin Zhou, Yonghong Wu, Dandan Li, Yinghui Kang, Houyang |
description | Key message
Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene
Yr4EL
was localized to an about 35 Mb region at the end of chr arm 4EL.
Stripe rust, caused by the fungus
Puccinia striiformis
f. sp.
tritici
, is a devastating wheat disease worldwide. Deployment of disease resistance (
R
) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust
R
gene
Yr4EL
from tetraploid
Thinopyrum elongatum
was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize
Yr4EL
, Chinese Spring (CS) mutant pairing homoeologous gene
ph1b
was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with
Yr4EL
resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped
Yr4EL
to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid
Th. elongatum
reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with
Yr4EL
were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for
Yr4EL
fine mapping and cloning. |
doi_str_mv | 10.1007/s00122-024-04756-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112860701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112860701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS3UCqaUF2BRWeqGTdrrnySTJaL0RxqpG7roynKcmxkjxw62U8SWJ687A1Tqoitfyd8519ZHyDmDDwyg_ZgAGOcVcFmBbOumgiOyYlLwinPJX5EVgISqbmt-Qt6kdAsAvAZxTE5EJ5paNmJFHj_hL3RhntBnGkZ6v0Odq4w56tkFO9CbnfVhfojLRAvntzqXSV5vaJq0c3SMervPloBPLhidbfDUWY-J3tu8oylHOyONS8o0YrIpa2-QbtEj_RlL01vyetQu4dnTeUp-fL6-ufpabb5_-XZ1uakMr5tc_sR4A6MWepBM9GvBeS-QcYYa-6Zb1xzEOBgJfT9ia9Zj17ZGaNOIrtcAgzglF4feOYa7BVNWk00GndMew5KUYIyvG2iBFfT9P-htWKIvr9tTXaFkVyh-oEwMKUUc1RztpOODYqD-GFIHQ6oYUntDCkro3VP10k84vESelRRAHIBUrvwW49_d_6n9DRgenWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112960749</pqid></control><display><type>article</type><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><source>Springer Nature</source><creator>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</creator><creatorcontrib>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</creatorcontrib><description>Key message
Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene
Yr4EL
was localized to an about 35 Mb region at the end of chr arm 4EL.
Stripe rust, caused by the fungus
Puccinia striiformis
f. sp.
tritici
, is a devastating wheat disease worldwide. Deployment of disease resistance (
R
) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust
R
gene
Yr4EL
from tetraploid
Thinopyrum elongatum
was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize
Yr4EL
, Chinese Spring (CS) mutant pairing homoeologous gene
ph1b
was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with
Yr4EL
resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped
Yr4EL
to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid
Th. elongatum
reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with
Yr4EL
were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for
Yr4EL
fine mapping and cloning.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-024-04756-0</identifier><identifier>PMID: 39365463</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Basidiomycota - pathogenicity ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant - genetics ; Cultivars ; Diploids ; Disease resistance ; Disease Resistance - genetics ; Fluorescence in situ hybridization ; Genes ; Genes, Plant ; Genetic Markers ; Genomes ; Genomic in situ hybridization ; Germplasm ; In Situ Hybridization, Fluorescence ; Laboratories ; Life Sciences ; Marker-assisted selection ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Poaceae - genetics ; Poaceae - microbiology ; Puccinia - pathogenicity ; Single-nucleotide polymorphism ; Stripe rust ; Tetraploidy ; Thinopyrum elongatum ; Translocation, Genetic ; Triticum - genetics ; Triticum - microbiology ; Virulence</subject><ispartof>Theoretical and applied genetics, 2024-10, Vol.137 (10), p.246, Article 246</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</cites><orcidid>0000-0002-0561-5413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39365463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Biran</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Xie, Yangqiu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Xu, Lili</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Sha, Lina</creatorcontrib><creatorcontrib>Zhang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Yonghong</creatorcontrib><creatorcontrib>Wu, Dandan</creatorcontrib><creatorcontrib>Li, Yinghui</creatorcontrib><creatorcontrib>Kang, Houyang</creatorcontrib><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene
Yr4EL
was localized to an about 35 Mb region at the end of chr arm 4EL.
Stripe rust, caused by the fungus
Puccinia striiformis
f. sp.
tritici
, is a devastating wheat disease worldwide. Deployment of disease resistance (
R
) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust
R
gene
Yr4EL
from tetraploid
Thinopyrum elongatum
was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize
Yr4EL
, Chinese Spring (CS) mutant pairing homoeologous gene
ph1b
was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with
Yr4EL
resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped
Yr4EL
to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid
Th. elongatum
reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with
Yr4EL
were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for
Yr4EL
fine mapping and cloning.</description><subject>Agriculture</subject><subject>Basidiomycota - pathogenicity</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Cultivars</subject><subject>Diploids</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Fluorescence in situ hybridization</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic Markers</subject><subject>Genomes</subject><subject>Genomic in situ hybridization</subject><subject>Germplasm</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Poaceae - genetics</subject><subject>Poaceae - microbiology</subject><subject>Puccinia - pathogenicity</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Tetraploidy</subject><subject>Thinopyrum elongatum</subject><subject>Translocation, Genetic</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Virulence</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUhS3UCqaUF2BRWeqGTdrrnySTJaL0RxqpG7roynKcmxkjxw62U8SWJ687A1Tqoitfyd8519ZHyDmDDwyg_ZgAGOcVcFmBbOumgiOyYlLwinPJX5EVgISqbmt-Qt6kdAsAvAZxTE5EJ5paNmJFHj_hL3RhntBnGkZ6v0Odq4w56tkFO9CbnfVhfojLRAvntzqXSV5vaJq0c3SMervPloBPLhidbfDUWY-J3tu8oylHOyONS8o0YrIpa2-QbtEj_RlL01vyetQu4dnTeUp-fL6-ufpabb5_-XZ1uakMr5tc_sR4A6MWepBM9GvBeS-QcYYa-6Zb1xzEOBgJfT9ia9Zj17ZGaNOIrtcAgzglF4feOYa7BVNWk00GndMew5KUYIyvG2iBFfT9P-htWKIvr9tTXaFkVyh-oEwMKUUc1RztpOODYqD-GFIHQ6oYUntDCkro3VP10k84vESelRRAHIBUrvwW49_d_6n9DRgenWw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gong, Biran</creator><creator>Gao, Jing</creator><creator>Xie, Yangqiu</creator><creator>Zhang, Hao</creator><creator>Zhu, Wei</creator><creator>Xu, Lili</creator><creator>Cheng, Yiran</creator><creator>Wang, Yi</creator><creator>Zeng, Jian</creator><creator>Fan, Xing</creator><creator>Sha, Lina</creator><creator>Zhang, Haiqin</creator><creator>Zhou, Yonghong</creator><creator>Wu, Dandan</creator><creator>Li, Yinghui</creator><creator>Kang, Houyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0561-5413</orcidid></search><sort><creationdate>20241001</creationdate><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><author>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Basidiomycota - pathogenicity</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Cultivars</topic><topic>Diploids</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Fluorescence in situ hybridization</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic Markers</topic><topic>Genomes</topic><topic>Genomic in situ hybridization</topic><topic>Germplasm</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Poaceae - genetics</topic><topic>Poaceae - microbiology</topic><topic>Puccinia - pathogenicity</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Tetraploidy</topic><topic>Thinopyrum elongatum</topic><topic>Translocation, Genetic</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Biran</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Xie, Yangqiu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Xu, Lili</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Sha, Lina</creatorcontrib><creatorcontrib>Zhang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Yonghong</creatorcontrib><creatorcontrib>Wu, Dandan</creatorcontrib><creatorcontrib>Li, Yinghui</creatorcontrib><creatorcontrib>Kang, Houyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Biran</au><au>Gao, Jing</au><au>Xie, Yangqiu</au><au>Zhang, Hao</au><au>Zhu, Wei</au><au>Xu, Lili</au><au>Cheng, Yiran</au><au>Wang, Yi</au><au>Zeng, Jian</au><au>Fan, Xing</au><au>Sha, Lina</au><au>Zhang, Haiqin</au><au>Zhou, Yonghong</au><au>Wu, Dandan</au><au>Li, Yinghui</au><au>Kang, Houyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>137</volume><issue>10</issue><spage>246</spage><pages>246-</pages><artnum>246</artnum><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message
Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene
Yr4EL
was localized to an about 35 Mb region at the end of chr arm 4EL.
Stripe rust, caused by the fungus
Puccinia striiformis
f. sp.
tritici
, is a devastating wheat disease worldwide. Deployment of disease resistance (
R
) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust
R
gene
Yr4EL
from tetraploid
Thinopyrum elongatum
was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize
Yr4EL
, Chinese Spring (CS) mutant pairing homoeologous gene
ph1b
was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with
Yr4EL
resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped
Yr4EL
to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid
Th. elongatum
reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with
Yr4EL
were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for
Yr4EL
fine mapping and cloning.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39365463</pmid><doi>10.1007/s00122-024-04756-0</doi><orcidid>https://orcid.org/0000-0002-0561-5413</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2024-10, Vol.137 (10), p.246, Article 246 |
issn | 0040-5752 1432-2242 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112860701 |
source | Springer Nature |
subjects | Agriculture Basidiomycota - pathogenicity Biochemistry Biomedical and Life Sciences Biotechnology Chromosome Mapping Chromosomes Chromosomes, Plant - genetics Cultivars Diploids Disease resistance Disease Resistance - genetics Fluorescence in situ hybridization Genes Genes, Plant Genetic Markers Genomes Genomic in situ hybridization Germplasm In Situ Hybridization, Fluorescence Laboratories Life Sciences Marker-assisted selection Original Article Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Diseases - genetics Plant Diseases - microbiology Plant Genetics and Genomics Poaceae - genetics Poaceae - microbiology Puccinia - pathogenicity Single-nucleotide polymorphism Stripe rust Tetraploidy Thinopyrum elongatum Translocation, Genetic Triticum - genetics Triticum - microbiology Virulence |
title | Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20wheat-tetraploid%20Thinopyrum%20elongatum%204EL%20small%20fragment%20translocation%20lines%20with%20stripe%20rust%20resistance%20gene%20Yr4EL&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Gong,%20Biran&rft.date=2024-10-01&rft.volume=137&rft.issue=10&rft.spage=246&rft.pages=246-&rft.artnum=246&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-024-04756-0&rft_dat=%3Cproquest_cross%3E3112860701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112960749&rft_id=info:pmid/39365463&rfr_iscdi=true |