Loading…

Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL

Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastatin...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2024-10, Vol.137 (10), p.246, Article 246
Main Authors: Gong, Biran, Gao, Jing, Xie, Yangqiu, Zhang, Hao, Zhu, Wei, Xu, Lili, Cheng, Yiran, Wang, Yi, Zeng, Jian, Fan, Xing, Sha, Lina, Zhang, Haiqin, Zhou, Yonghong, Wu, Dandan, Li, Yinghui, Kang, Houyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3
container_end_page
container_issue 10
container_start_page 246
container_title Theoretical and applied genetics
container_volume 137
creator Gong, Biran
Gao, Jing
Xie, Yangqiu
Zhang, Hao
Zhu, Wei
Xu, Lili
Cheng, Yiran
Wang, Yi
Zeng, Jian
Fan, Xing
Sha, Lina
Zhang, Haiqin
Zhou, Yonghong
Wu, Dandan
Li, Yinghui
Kang, Houyang
description Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastating wheat disease worldwide. Deployment of disease resistance ( R ) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL , Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.
doi_str_mv 10.1007/s00122-024-04756-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112860701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112860701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS3UCqaUF2BRWeqGTdrrnySTJaL0RxqpG7roynKcmxkjxw62U8SWJ687A1Tqoitfyd8519ZHyDmDDwyg_ZgAGOcVcFmBbOumgiOyYlLwinPJX5EVgISqbmt-Qt6kdAsAvAZxTE5EJ5paNmJFHj_hL3RhntBnGkZ6v0Odq4w56tkFO9CbnfVhfojLRAvntzqXSV5vaJq0c3SMervPloBPLhidbfDUWY-J3tu8oylHOyONS8o0YrIpa2-QbtEj_RlL01vyetQu4dnTeUp-fL6-ufpabb5_-XZ1uakMr5tc_sR4A6MWepBM9GvBeS-QcYYa-6Zb1xzEOBgJfT9ia9Zj17ZGaNOIrtcAgzglF4feOYa7BVNWk00GndMew5KUYIyvG2iBFfT9P-htWKIvr9tTXaFkVyh-oEwMKUUc1RztpOODYqD-GFIHQ6oYUntDCkro3VP10k84vESelRRAHIBUrvwW49_d_6n9DRgenWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112960749</pqid></control><display><type>article</type><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><source>Springer Nature</source><creator>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</creator><creatorcontrib>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</creatorcontrib><description>Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastating wheat disease worldwide. Deployment of disease resistance ( R ) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL , Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-024-04756-0</identifier><identifier>PMID: 39365463</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Basidiomycota - pathogenicity ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant - genetics ; Cultivars ; Diploids ; Disease resistance ; Disease Resistance - genetics ; Fluorescence in situ hybridization ; Genes ; Genes, Plant ; Genetic Markers ; Genomes ; Genomic in situ hybridization ; Germplasm ; In Situ Hybridization, Fluorescence ; Laboratories ; Life Sciences ; Marker-assisted selection ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Poaceae - genetics ; Poaceae - microbiology ; Puccinia - pathogenicity ; Single-nucleotide polymorphism ; Stripe rust ; Tetraploidy ; Thinopyrum elongatum ; Translocation, Genetic ; Triticum - genetics ; Triticum - microbiology ; Virulence</subject><ispartof>Theoretical and applied genetics, 2024-10, Vol.137 (10), p.246, Article 246</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</cites><orcidid>0000-0002-0561-5413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39365463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Biran</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Xie, Yangqiu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Xu, Lili</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Sha, Lina</creatorcontrib><creatorcontrib>Zhang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Yonghong</creatorcontrib><creatorcontrib>Wu, Dandan</creatorcontrib><creatorcontrib>Li, Yinghui</creatorcontrib><creatorcontrib>Kang, Houyang</creatorcontrib><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastating wheat disease worldwide. Deployment of disease resistance ( R ) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL , Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.</description><subject>Agriculture</subject><subject>Basidiomycota - pathogenicity</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Cultivars</subject><subject>Diploids</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Fluorescence in situ hybridization</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic Markers</subject><subject>Genomes</subject><subject>Genomic in situ hybridization</subject><subject>Germplasm</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Poaceae - genetics</subject><subject>Poaceae - microbiology</subject><subject>Puccinia - pathogenicity</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Tetraploidy</subject><subject>Thinopyrum elongatum</subject><subject>Translocation, Genetic</subject><subject>Triticum - genetics</subject><subject>Triticum - microbiology</subject><subject>Virulence</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUhS3UCqaUF2BRWeqGTdrrnySTJaL0RxqpG7roynKcmxkjxw62U8SWJ687A1Tqoitfyd8519ZHyDmDDwyg_ZgAGOcVcFmBbOumgiOyYlLwinPJX5EVgISqbmt-Qt6kdAsAvAZxTE5EJ5paNmJFHj_hL3RhntBnGkZ6v0Odq4w56tkFO9CbnfVhfojLRAvntzqXSV5vaJq0c3SMervPloBPLhidbfDUWY-J3tu8oylHOyONS8o0YrIpa2-QbtEj_RlL01vyetQu4dnTeUp-fL6-ufpabb5_-XZ1uakMr5tc_sR4A6MWepBM9GvBeS-QcYYa-6Zb1xzEOBgJfT9ia9Zj17ZGaNOIrtcAgzglF4feOYa7BVNWk00GndMew5KUYIyvG2iBFfT9P-htWKIvr9tTXaFkVyh-oEwMKUUc1RztpOODYqD-GFIHQ6oYUntDCkro3VP10k84vESelRRAHIBUrvwW49_d_6n9DRgenWw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Gong, Biran</creator><creator>Gao, Jing</creator><creator>Xie, Yangqiu</creator><creator>Zhang, Hao</creator><creator>Zhu, Wei</creator><creator>Xu, Lili</creator><creator>Cheng, Yiran</creator><creator>Wang, Yi</creator><creator>Zeng, Jian</creator><creator>Fan, Xing</creator><creator>Sha, Lina</creator><creator>Zhang, Haiqin</creator><creator>Zhou, Yonghong</creator><creator>Wu, Dandan</creator><creator>Li, Yinghui</creator><creator>Kang, Houyang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0561-5413</orcidid></search><sort><creationdate>20241001</creationdate><title>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</title><author>Gong, Biran ; Gao, Jing ; Xie, Yangqiu ; Zhang, Hao ; Zhu, Wei ; Xu, Lili ; Cheng, Yiran ; Wang, Yi ; Zeng, Jian ; Fan, Xing ; Sha, Lina ; Zhang, Haiqin ; Zhou, Yonghong ; Wu, Dandan ; Li, Yinghui ; Kang, Houyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Basidiomycota - pathogenicity</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Cultivars</topic><topic>Diploids</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Fluorescence in situ hybridization</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic Markers</topic><topic>Genomes</topic><topic>Genomic in situ hybridization</topic><topic>Germplasm</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Poaceae - genetics</topic><topic>Poaceae - microbiology</topic><topic>Puccinia - pathogenicity</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Tetraploidy</topic><topic>Thinopyrum elongatum</topic><topic>Translocation, Genetic</topic><topic>Triticum - genetics</topic><topic>Triticum - microbiology</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Biran</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Xie, Yangqiu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Xu, Lili</creatorcontrib><creatorcontrib>Cheng, Yiran</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zeng, Jian</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Sha, Lina</creatorcontrib><creatorcontrib>Zhang, Haiqin</creatorcontrib><creatorcontrib>Zhou, Yonghong</creatorcontrib><creatorcontrib>Wu, Dandan</creatorcontrib><creatorcontrib>Li, Yinghui</creatorcontrib><creatorcontrib>Kang, Houyang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Biran</au><au>Gao, Jing</au><au>Xie, Yangqiu</au><au>Zhang, Hao</au><au>Zhu, Wei</au><au>Xu, Lili</au><au>Cheng, Yiran</au><au>Wang, Yi</au><au>Zeng, Jian</au><au>Fan, Xing</au><au>Sha, Lina</au><au>Zhang, Haiqin</au><au>Zhou, Yonghong</au><au>Wu, Dandan</au><au>Li, Yinghui</au><au>Kang, Houyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>137</volume><issue>10</issue><spage>246</spage><pages>246-</pages><artnum>246</artnum><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici , is a devastating wheat disease worldwide. Deployment of disease resistance ( R ) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL , Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76–612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39365463</pmid><doi>10.1007/s00122-024-04756-0</doi><orcidid>https://orcid.org/0000-0002-0561-5413</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2024-10, Vol.137 (10), p.246, Article 246
issn 0040-5752
1432-2242
1432-2242
language eng
recordid cdi_proquest_miscellaneous_3112860701
source Springer Nature
subjects Agriculture
Basidiomycota - pathogenicity
Biochemistry
Biomedical and Life Sciences
Biotechnology
Chromosome Mapping
Chromosomes
Chromosomes, Plant - genetics
Cultivars
Diploids
Disease resistance
Disease Resistance - genetics
Fluorescence in situ hybridization
Genes
Genes, Plant
Genetic Markers
Genomes
Genomic in situ hybridization
Germplasm
In Situ Hybridization, Fluorescence
Laboratories
Life Sciences
Marker-assisted selection
Original Article
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Poaceae - genetics
Poaceae - microbiology
Puccinia - pathogenicity
Single-nucleotide polymorphism
Stripe rust
Tetraploidy
Thinopyrum elongatum
Translocation, Genetic
Triticum - genetics
Triticum - microbiology
Virulence
title Development of wheat-tetraploid Thinopyrum elongatum 4EL small fragment translocation lines with stripe rust resistance gene Yr4EL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20wheat-tetraploid%20Thinopyrum%20elongatum%204EL%20small%20fragment%20translocation%20lines%20with%20stripe%20rust%20resistance%20gene%20Yr4EL&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Gong,%20Biran&rft.date=2024-10-01&rft.volume=137&rft.issue=10&rft.spage=246&rft.pages=246-&rft.artnum=246&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-024-04756-0&rft_dat=%3Cproquest_cross%3E3112860701%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-221260fa3ad413b8322b3e121eaeb6985203fdc40bbfe7c8f977c3ac639ba00d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112960749&rft_id=info:pmid/39365463&rfr_iscdi=true