Loading…
Building Asymmetric Zn-N3 Bridge between 2D Photocatalyst and Co-catalyst for Directed Charge Transfer toward Efficient H2O2 Synthesis
Two-dimensional (2D) polymeric semiconductors are a class of promising photocatalysts; however, it remains challenging to facilitate their interlayer charge transfer for suppressed in-plane charge recombination and thus improved quantum efficiency. Although some strategies, such as π-π stacking and...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-11, p.e202415800 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional (2D) polymeric semiconductors are a class of promising photocatalysts; however, it remains challenging to facilitate their interlayer charge transfer for suppressed in-plane charge recombination and thus improved quantum efficiency. Although some strategies, such as π-π stacking and van der Waals interaction, have been developed so far, directed interlayer charge transfer still cannot be achieved. Herein, we report a strategy of forming asymmetric Zn-N3 units that can bridge nitrogen (N)-doped carbon layers with polymeric carbon nitride nanosheets (C3N4-Zn-N(C)) to address this challenge. The symmetry-breaking Zn-N3 moiety, which has an asymmetric local charge distribution, enables directed interfacial charge transfer between the C3N4 photocatalyst and the N-doped carbon co-catalyst. As evidenced by femtosecond transient absorption spectroscopy, charge separation can be significantly enhanced by the interfacial asymmetric Zn-N3 bonding bridges. As a result, the designed C3N4-Zn-N(C) catalyst exhibits dramatically enhanced H2O2 photosynthesis activity, outperforming most of the reported C3N4-based catalysts. This work highlights the importance of tailoring interfacial chemical bonding channels in polymeric photocatalysts at the molecular level to achieve effective spatial charge separation.Two-dimensional (2D) polymeric semiconductors are a class of promising photocatalysts; however, it remains challenging to facilitate their interlayer charge transfer for suppressed in-plane charge recombination and thus improved quantum efficiency. Although some strategies, such as π-π stacking and van der Waals interaction, have been developed so far, directed interlayer charge transfer still cannot be achieved. Herein, we report a strategy of forming asymmetric Zn-N3 units that can bridge nitrogen (N)-doped carbon layers with polymeric carbon nitride nanosheets (C3N4-Zn-N(C)) to address this challenge. The symmetry-breaking Zn-N3 moiety, which has an asymmetric local charge distribution, enables directed interfacial charge transfer between the C3N4 photocatalyst and the N-doped carbon co-catalyst. As evidenced by femtosecond transient absorption spectroscopy, charge separation can be significantly enhanced by the interfacial asymmetric Zn-N3 bonding bridges. As a result, the designed C3N4-Zn-N(C) catalyst exhibits dramatically enhanced H2O2 photosynthesis activity, outperforming most of the reported C3N4-based catalysts. This work highlights the importan |
---|---|
ISSN: | 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202415800 |