Loading…

Probing the Nanonewton Mitotic Cell Deformation Force by Ion-Resonance-Enhanced Photonics Force Microscopy

Mechanical forces are essential for regulating dynamic changes in cellular activities. A comprehensive understanding of these forces is imperative for unraveling fundamental mechanisms. Here, we develop a microprobe capable of facilitating the measurement of biological forces up to nanonewton levels...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2024-11, Vol.24 (44), p.14004-14011
Main Authors: Di, Xiangjun, Wang, Dejiang, Shan, Xuchen, Ding, Lei, Zhong, Zhaoxiang, Chen, Chaohao, Wang, Dajing, Song, Zhiyong, Wang, Jianyun, Su, Qian Peter, Yue, Shuhua, Zhang, Min, Cheng, Faliang, Wang, Fan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical forces are essential for regulating dynamic changes in cellular activities. A comprehensive understanding of these forces is imperative for unraveling fundamental mechanisms. Here, we develop a microprobe capable of facilitating the measurement of biological forces up to nanonewton levels in living cells. This probe is designed by coating the core of anatase titania particles with amorphous titania and silica shells and an upconversion nanoparticles (UCNPs) layer. Leveraging both antireflection and ion resonance effects from the shells, the optically trapped probe attains a maximum lateral optical trap stiffness of 14.24 pN μm–1 mW–1, surpassing the best reported value by a factor of 3. Employing this advanced probe in a photonic force microscope, we determine the elasticity modulus of mitotic HeLa cells as 1.27 ± 0.3 kPa. Nanonewton probes offer the potential to explore 3D cellular mechanics with unparalleled precision and spatial resolution, fostering a deeper understanding of the underlying biomechanical mechanisms.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c03610