Loading…

Ultra-short-term stress measurement using RGB camera-based remote photoplethysmography with reduced effects of Individual differences in heart rate

Stress is linked to health problems, increasing the need for immediate monitoring. Traditional methods like electrocardiograms or contact photoplethysmography require device attachment, causing discomfort, and ultra-short-term stress measurement research remains inadequate. This paper proposes a met...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2024-10
Main Authors: Lee, Seungkeon, Do Song, Young, Lee, Eui Chul
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stress is linked to health problems, increasing the need for immediate monitoring. Traditional methods like electrocardiograms or contact photoplethysmography require device attachment, causing discomfort, and ultra-short-term stress measurement research remains inadequate. This paper proposes a method for ultra-short-term stress monitoring using remote photoplethysmography (rPPG). Previous predictions of ultra-short-term stress have typically used pulse rate variability (PRV) features derived from time-segmented heart rate data. However, PRV varies at the same stress levels depending on heart rates, necessitating a new method to account for these differences. This study addressed this by segmenting rPPG data based on normal-to-normal intervals (NNIs), converted from peak-to-peak intervals, to predict ultra-short-term stress indices. We used NNI counts corresponding to average durations of 10, 20, and 30 s (13, 26, and 39 NNIs) to extract PRV features, predicting the Baevsky stress index through regressors. The Extra Trees Regressor achieved R scores of 0.6699 for 13 NNIs, 0.8751 for 26 NNIs, and 0.9358 for 39 NNIs, surpassing the time-segmented approach, which yielded 0.4162, 0.6528, and 0.7943 for 10, 20, and 30-s intervals, respectively. These findings demonstrate that using NNI counts for ultra-short-term stress prediction improves accuracy by accounting for individual bio-signal variations.
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-024-03213-w