Loading…
Optimizing Aqueous Zinc-Sulfur Battery Performance via Regulating Acetonitrile Co-Solvents and Carbon Nanotube Carriers
Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes s...
Saved in:
Published in: | ChemSusChem 2024-11, p.e202401429 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rechargeable aqueous zinc-sulfur batteries (AZSBs) are gaining attention due to their high energy density, ultra-stable discharge platform, and safety. However, poor liquid/solid reaction processes at the anode and cathode reduce reaction kinetics, and the severe dissolution of polysulfides causes shuttle effects during discharge/charge cycles, hindering practical applications. Improving performance requires optimizing both the cathode and electrolyte. Herein, we design an organic-inorganic hybrid electrolyte (zinc trifluoromethanesulfonate and trace iodine monomer dissolved in an acetonitrile/water co-solvent (AN-X)) and a partially exfoliated multi-walled carbon nanotube (PECNT) hosted sulfur (S@PECNTs) cathode for AZSBs. The sulfur is highly dispersed along the PECNTs with appropriate wettability at the electrode/electrolyte interface using AN-3 as the electrolyte. Meanwhile, this electrolyte inhibits hydrogen evolution at negative potentials and promotes uniform Zn ion stripping/plating. Expressively, the AN-3-based AZSB exhibits a high discharge capacity of 1370 mAh g
with excellent Coulombic efficiency (79.9 %), outstanding rate capability, and cycling performance. These improvements are attributed to the synergistic effect between the S@PECNTs and the AN-3 electrolyte, which reduces R
to enhance reaction kinetics and blocks the dissolution and shuttle effect of polysulfides, ensuring a reversible reaction between zinc and sulfur. |
---|---|
ISSN: | 1864-5631 1864-564X 1864-564X |
DOI: | 10.1002/cssc.202401429 |