Loading…
Interaction of SARS-CoV-2 Spike protein with ACE2 induces cortical actin modulation, including dephosphorylation of ERM proteins and reduction of cortical stiffness
Cell surface cortical actin is a regulatory target for viral infection. We aimed to investigate the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on host cell cortical stiffness, an indicator of cortical actin structure. The receptor-binding domain (RBD) of SARS-Co...
Saved in:
Published in: | Human cell : official journal of Human Cell Research Society 2024-10, Vol.38 (1), p.3, Article 3 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell surface cortical actin is a regulatory target for viral infection. We aimed to investigate the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on host cell cortical stiffness, an indicator of cortical actin structure. The receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein induced a reduction in cortical stiffness in ACE2-expressing cells. The interaction of RBD with ACE2 caused the inactivation of Ezrin/Radixin/Moesin (ERM) proteins. We further investigated the effects of the RBD of SARS-CoV-2 Omicron variants, BA.1 and BA.5. These RBDs influenced cortical stiffness depending on their affinity for ACE2. Our study provides the first evidence that the interaction of the SARS-CoV-2 S protein with ACE2 induces mechanobiological signals and attenuates the cortical actin. |
---|---|
ISSN: | 1749-0774 0914-7470 1749-0774 |
DOI: | 10.1007/s13577-024-01142-2 |