Loading…
Strong Subseasonal Variability of Oxic Methane Production Challenges Methane Budgeting in Freshwater Lakes
Methane (CH4) accumulation in the well-oxygenated lake epilimnion enhances the diffusive atmospheric CH4 emission. Both lateral transport and in situ oxic methane production (OMP) have been suggested as potential sources. While the latter has been recently supported by increasing evidence, quantifyi...
Saved in:
Published in: | Environmental science & technology 2024-11, Vol.58 (44), p.19690-19701 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methane (CH4) accumulation in the well-oxygenated lake epilimnion enhances the diffusive atmospheric CH4 emission. Both lateral transport and in situ oxic methane production (OMP) have been suggested as potential sources. While the latter has been recently supported by increasing evidence, quantifying the exact contribution of OMP to atmospheric emissions remains challenging. Based on a large high-resolution field data set collected during 2019–2020 in the deep stratified Lake Stechlin and on three-dimensional hydrodynamic modeling, we improved existing CH4 budgets by resolving each component of the mass balance model at a seasonal scale and therefore better constrained the residual OMP. All terms in our model showed a large temporal variability at scales from intraday to seasonal, and the modeled OMP was most sensitive to the surface CH4 flux estimates. Future efforts are needed to reduce the uncertainties in estimating OMP rates using the mass balance approach by increasing the frequency of atmospheric CH4 flux measurements. |
---|---|
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/acs.est.4c07413 |