Loading…
A Bond-Based Machine Learning Model for Molecular Polarizabilities and A Priori Raman Spectra
The use of machine learning (ML) algorithms in molecular simulations has become commonplace in recent years. There now exists, for instance, a multitude of ML force field algorithms that have enabled simulations approaching ab initio level accuracy at time scales and system sizes that significantly...
Saved in:
Published in: | Journal of chemical theory and computation 2024-11, Vol.20 (22), p.10071-10079 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of machine learning (ML) algorithms in molecular simulations has become commonplace in recent years. There now exists, for instance, a multitude of ML force field algorithms that have enabled simulations approaching ab initio level accuracy at time scales and system sizes that significantly exceed what is otherwise possible with traditional methods. Far fewer algorithms exist for predicting rotationally equivariant, tensorial properties such as the electric polarizability. Here, we introduce a kernel ridge regression algorithm for machine learning of the polarizability tensor. This algorithm is based on the bond polarizability model and allows prediction of the tensor components at the cost similar to that of scalar quantities. We subsequently show the utility of this algorithm by simulating gas phase Raman spectra of biphenyl and malonaldehyde using classical molecular dynamics simulations of these systems performed with the recently developed MACE-OFF23 potential. The calculated spectra are shown to agree very well with the experiments and thus confirm the expediency of our algorithm as well as the accuracy of the used force field. More generally, this work demonstrates the potential of physics-informed approaches to yield simple yet effective machine learning algorithms for molecular properties. |
---|---|
ISSN: | 1549-9618 1549-9626 1549-9626 |
DOI: | 10.1021/acs.jctc.4c01086 |