Loading…
Enhancing the Photovoltaic Efficiency of In0.2Ga0.8N/GaN Quantum Well Intermediate Band Solar Cells Using Combined Electric and Magnetic Fields
This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schr...
Saved in:
Published in: | Materials 2024-10, Vol.17 (21), p.5219 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schrödinger equation within the framework of the effective-mass approximation. Our findings reveal that electric and magnetic fields significantly influence the energy levels of electrons and holes, optical transition energies, open-circuit voltages, short-circuit currents, and overall photovoltaic conversion performances of IBSCs. Furthermore, this research indicates that applying a magnetic field positively influences conversion efficiency. Through the optimization of IBSC parameters, an efficiency of approximately 50% is achievable, surpassing the conventional Shockley–Queisser limit. This theoretical study demonstrates the potential for next-generation photovoltaic technology advancements. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17215219 |