Loading…
Evaluating applicability domain of acute toxicity QSAR models for military and industrial chemical risk assessment
Quantitative Structure-Activity Relationship (QSAR) models can be used to predict the risk of novel and emergent chemicals causing adverse health outcomes, avoidance of which is crucial for military operations. While QSAR modeling approaches have been proposed for military and industry risk assessme...
Saved in:
Published in: | Toxicology letters 2025-01, Vol.403, p.1-8 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative Structure-Activity Relationship (QSAR) models can be used to predict the risk of novel and emergent chemicals causing adverse health outcomes, avoidance of which is crucial for military operations. While QSAR modeling approaches have been proposed for military and industry risk assessment, the applicability of peer-reviewed tissue-specific QSAR models in military and industrial contexts remain largely unexplored, particularly with respect to specific organ toxicity. We investigated the applicability domain (AD) of acute and sub-chronic tissue-specific QSAR models to evaluate the coverage of military- and industrial-relevant chemicals. Our analysis reveals that military-relevant compounds occupy a similar chemical space as industrial compounds. However, published models for acute target organ toxicity had minimal coverage of the military and industrial chemicals. The published Collaborative Acute Toxicity Modeling Suite (CATMoS) acute oral toxicity model was the notable exception, as it covers a broad range of military and industrial chemicals. Our study underscores the urgent need for development of novel tissue-specific QSAR models, or modification of existing models, to improve chemical risk prediction in both industrial and military applications.
[Display omitted]
•The applicability domain (AD) of acute and sub-chronic tissue-specific QSAR models was investigated.•This AD analysis was conducted to assess QSAR model relevance to military and industrial chemicals.•Most of the tissue-specific QSAR models for target organ toxicity had minimal coverage of military and industrial chemicals.•Only one model each for lung, liver, and heart had over 75% overlap with military/industrial chemicals. |
---|---|
ISSN: | 0378-4274 1879-3169 1879-3169 |
DOI: | 10.1016/j.toxlet.2024.11.006 |