Loading…
Identification and expression analysis of phosphate transporter (PHT) genes in Brachypodium distachyon in response to phosphorus deficiency
Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon...
Saved in:
Published in: | Protoplasma 2024-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphorus (P) is a macronutrient that plays a crucial role in critical plant functions. Phosphate transporters (PHTs) ensure the acquisition and translocation of Pi in the plant, thereby playing a key role in maintaining normal plant growth under Pi deficiency conditions. In Brachypodium distachyon, the grass model system, the function of individual PHT genes, remains largely unknown. Here, we identified the complete PHT gene family in B. distachyon, for the first time, and analyzed their expression profiles under Pi deficiency. Overall, 25 PHT genes in B. distachyon (BdPHTs) were identified, which were divided into four clades (PHT1-4). BdPHT genes were found to be unevenly distributed across the five chromosomes. Both segmental and tandem duplication events contributed to PHT gene expansion in B. distachyon which underwent a strong purifying selection. Moreover, exon-intron organization and motif composition were conserved within each PHT group consolidating the classification of the phylogenetic tree. Motif composition differs among the four PHT groups, indicating their functional divergence. Gene expression analysis using real-time quantitative PCR revealed that two BdPHT1 genes (BdPHT1.9 and BdPHT1.10) were upregulated in leaves, and seven (BdPHT1.9, BdPHT1.8, BdPHT1.7, BdPHT1.11, BdPHT1.12, BdPHT1.5, and BdPHT1.13) in roots under P deficiency suggesting their involvement in P uptake and translocation. Therefore, these results lay the foundation for future functional analyses in B. distachyon to improve P deficiency tolerance in B. distachyon and other cereals. |
---|---|
ISSN: | 1615-6102 1615-6102 |
DOI: | 10.1007/s00709-024-02014-0 |