Loading…
Best Subset Solution Path for Linear Dimension Reduction Models Using Continuous Optimization
The selection of best variables is a challenging problem in supervised and unsupervised learning, especially in high-dimensional contexts where the number of variables is usually much larger than the number of observations. In this paper, we focus on two multivariate statistical methods: principal c...
Saved in:
Published in: | Biometrical journal 2025-02, Vol.67 (1), p.e70015 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The selection of best variables is a challenging problem in supervised and unsupervised learning, especially in high-dimensional contexts where the number of variables is usually much larger than the number of observations. In this paper, we focus on two multivariate statistical methods: principal components analysis and partial least squares. Both approaches are popular linear dimension-reduction methods with numerous applications in several fields including in genomics, biology, environmental science, and engineering. In particular, these approaches build principal components, new variables that are combinations of all the original variables. A main drawback of principal components is the difficulty to interpret them when the number of variables is large. To define principal components from the most relevant variables, we propose to cast the best subset solution path method into principal component analysis and partial least square frameworks. We offer a new alternative by exploiting a continuous optimization algorithm for best subset solution path. Empirical studies show the efficacy of our approach for providing the best subset solution path. The usage of our algorithm is further exposed through the analysis of two real data sets. The first data set is analyzed using the principle component analysis while the analysis of the second data set is based on partial least square framework. |
---|---|
ISSN: | 1521-4036 1521-4036 |
DOI: | 10.1002/bimj.70015 |