Loading…
Complete positivity and thermal relaxation in quadratic quantum master equations
The ultimate goal of this paper is to develop a systematic method for deriving quantum master equations that satisfy the requirements of a completely positive and trace-preserving (CPTP) map, further describing thermal relaxation processes. In this paper, we assume that the quantum master equation i...
Saved in:
Published in: | Physical review. E 2024-11, Vol.110 (5-1), p.054116, Article 054116 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ultimate goal of this paper is to develop a systematic method for deriving quantum master equations that satisfy the requirements of a completely positive and trace-preserving (CPTP) map, further describing thermal relaxation processes. In this paper, we assume that the quantum master equation is obtained through the canonical quantization of the generalized Brownian motion proposed in our recent paper [T. Koide and F. Nicacio, Phys. Lett. A 494, 129277 (2024)0375-960110.1016/j.physleta.2023.129277]. At least classically, this dynamics describes the thermal relaxation process regardless of the choice of the system Hamiltonian. The remaining task is to identify the parameters ensuring that the quantum master equation meets complete positivity. We limit our discussion to many-body quadratic Hamiltonians and establish a CPTP criterion for our quantum master equation. This criterion is useful for applying our quantum master equation to models with interaction such as a network model, which has been used to investigate how quantum effects modify heat conduction. |
---|---|
ISSN: | 2470-0045 2470-0053 2470-0053 |
DOI: | 10.1103/PhysRevE.110.054116 |