Loading…
Proportional myoelectric control of a virtual bionic arm in participants with hemiparesis, muscle spasticity, and impaired range of motion
This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis,...
Saved in:
Published in: | Journal of neuroengineering and rehabilitation 2024-12, Vol.21 (1), p.222 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation. Current control strategies provide only binary, all-or-nothing control based on a linear threshold of muscle activity.BACKGROUNDThis research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation. Current control strategies provide only binary, all-or-nothing control based on a linear threshold of muscle activity.In this study, we demonstrate the ability of participants with hemiparesis to finely regulate their muscle activity to proportionally control the position of a virtual bionic arm. Ten stroke survivors and ten healthy, aged-matched controls completed a target-touching task with the virtual bionic arm. We compared the signal-to-noise ratio (SNR) of the recorded electromyography (EMG) signals used to train the control algorithms and the task performance using root mean square error, percent time in target, and maximum hold time within the target window. Additionally, we looked at the correlation between EMG SNR, task performance, and clinical spasticity scores.METHODSIn this study, we demonstrate the ability of participants with hemiparesis to finely regulate their muscle activity to proportionally control the position of a virtual bionic arm. Ten stroke survivors and ten healthy, aged-matched controls completed a target-touching task with the virtual bionic arm. We compared the signal-to-noise ratio (SNR) of the recorded electromyography (EMG) signals used to train the control algorithms and the task performance using root mean square error, percent time in target, and maximum hold time within the target window. Additionally, we looked at the correlation between EMG SNR, task performance, and clinical spasticity scores.A |
---|---|
ISSN: | 1743-0003 1743-0003 |
DOI: | 10.1186/s12984-024-01529-0 |