Loading…
High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction
Novel biomarkers are needed to better identify-and distinguish-heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented ge...
Saved in:
Published in: | Basic research in cardiology 2024-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel biomarkers are needed to better identify-and distinguish-heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented genome-wide DNA methylation study of circulating CD4
T lymphocytes isolated from peripheral blood using reduced representation bisulfite sequencing (RRBS) in two cohorts (i.e., discovery/validation) each of both male and female patients with HFpEF (n = 12/10), HF with reduced EF (HFrEF; n = 7/5), and volunteers lacking clinical evidence of HF (CON; n = 7/5). RRBS is the gold-standard platform for measuring genome-wide DNA methylation changes at single-cytosine resolution in hypothesis-generating studies. We identified three hypomethylated HFpEF-specific differentially methylated positions (DMPs) associated with FOXB1, ELMOD1, and DGKH genes wherein ROC curve analysis revealed that increased expression levels had a reasonable diagnostic performance in predicting HFpEF (AUC ≥ 0.8, p |
---|---|
ISSN: | 1435-1803 1435-1803 |
DOI: | 10.1007/s00395-024-01093-7 |