Loading…

Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea

Identifying potential sources of suspended sediment (SS) in headwater catchments is crucial for water quality management. To differentiate these potential SS sources, we investigated the distribution of two fallout radionuclides (FRNs), 137Cs and 210Pbex, using gamma spectrometry along with soil org...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2024-01, Vol.16 (1), p.182
Main Authors: Nam, Sooyoun, Kim, Kidae, Jang, Sujin, Lee, Jaeuk, Gi, Shinwoo, Kim, Minseok, Kim, Jin Kwan, Kim, Sukwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying potential sources of suspended sediment (SS) in headwater catchments is crucial for water quality management. To differentiate these potential SS sources, we investigated the distribution of two fallout radionuclides (FRNs), 137Cs and 210Pbex, using gamma spectrometry along with soil organic matter (SOM) analysis in a headwater catchment with five potential SS sources: cultivated land, non-harvested forest floor, eroded hillslope, harvested forest floor, and stream bank. The 137Cs and 210Pbex concentrations and the SOM content were considerably higher in the harvested forest floor materials than in the other four potential SS source materials. FRN concentrations revealed distinct properties according to the type of potential SS sources. Specifically, the combination of FRNs (with the effect of SOM content removed) associated with the mineral fraction and SOM showed distinguishable differences among the potential SS sources, except for no difference between cultivated land and eroded hillslope. Therefore, SOM and FRNs, or their combination, can be effective indices to differentiate or trace potential SS sources on various land use/land cover types within a catchment. Further field tests will allow the tracing techniques that bind FRNs with SOM to contribute to understanding SS transport from non-point sources within a catchment.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16010182