Loading…

7‑Deazapurine and Pyrimidine Nucleoside and Oligonucleotide Cycloadducts Formed by Inverse Diels–Alder Reactions with 3,6-Di(pyrid-2-yl)-1,2,4,5-tetrazine: Ethynylated and Vinylated Nucleobases for Functionalization and Impact of Pyridazine Adducts on DNA Base Pair Stability and Mismatch Discrimination

The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels–Alder (iEDDA) reaction with 3,6-di­(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2024-08, Vol.89 (16), p.11304-11322
Main Authors: Chandankar, Somnath Shivaji, Kondhare, Dasharath, Deshmukh, Sushma, Yang, Haozhe, Leonard, Peter, Seela, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels–Alder (iEDDA) reaction with 3,6-di­(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides were synthesized containing iEDDA modifications, and the impact on duplex stability was investigated. iEDDA reactions were performed on nucleoside triple bond side chains. Oxidation was not required in these cases as dihydropyridazine intermediates are not formed. In contrast, oxidation is necessary for reactions performed on alkenyl compounds. This was verified on 5-vinyl-2′-deoxyuridine. A diastereomeric mixture of 1,2-dihydropyridazine cycloadduct intermediates was isolated, characterized, and later oxidized. 12-mer oligonucleotides containing 1,2-pyridazine inverse Diels–Alder cycloadducts and their precursors were hybridized to short DNA duplexes. For that, a series of phosphoramidites was prepared. DNA duplexes with 7-functionalized 7-deazaadenines and 5-functionalized pyrimidines display high duplex stability when spacer units are present between nucleobases and pyridazine cycloadducts. A direct connectivity of the pyridazine moiety to nucleobases as reported for metabolic labeling of vinyl nucleosides reduced duplex stability strongly. Oligonucleotides bearing linkers with and without pyridazine cycloadducts attached to the 7-deazaadenine nucleobase significantly reduced mismatch formation with dC and dG.
ISSN:0022-3263
1520-6904
1520-6904
DOI:10.1021/acs.joc.4c00982