Loading…
Autophagy deficiency exacerbated hypoxia-reoxygenation induced inflammation and cell death via a mitochondrial DNA/STING/IRF3 pathway
Autophagy is an important cellular process for maintaining physiological homeostasis and is known to protect against cardiovascular diseases including ischemia reperfusion (I/R) injury. The underlying mechanisms behind its protection require further characterization. Atg7 knock out (AKO) mice were g...
Saved in:
Published in: | Life sciences (1973) 2024-12, Vol.358, p.123173, Article 123173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autophagy is an important cellular process for maintaining physiological homeostasis and is known to protect against cardiovascular diseases including ischemia reperfusion (I/R) injury. The underlying mechanisms behind its protection require further characterization.
Atg7 knock out (AKO) mice were generated and subjected to I/R injury, complemented by Atg7 KO in a H9c2 cardiomyoblast cellular model ± hypoxia-reoxygenation. Subsequently, in both models, inflammation and cell death were studied.
We confirmed that Atg7 KO led to autophagy, including mitophagy, deficiency. Upon H/R, Atg7 KO cells exhibited increased cell death compared to WT cells. Notably, we found that autophagy deficiency increased stress-induced mitochondrial fission, release of mitochondrial DNA, and sterile inflammation, namely activation of a STING/IRF3 axis leading to elevated interferon-α. Following I/R injury, AKO mice showed elevated cell death which correlated with a gene expression profile indicative of decreased anti-inflammatory responses.
Autophagy deficiency in the cardiomyocyte setting results in detrimental effects during I/R injury in mice or H/R injury in cells, mediated in part via mtDNA/IRF3/STING pathway. As such, modulation of this pathway may yield novel and promising therapeutics to treat or prevent I/R injury. |
---|---|
ISSN: | 0024-3205 1879-0631 1879-0631 |
DOI: | 10.1016/j.lfs.2024.123173 |