Loading…
Tissue adhesive hyaluronan-quercetin (Ago)@halloysite-fungal carboxymethyl chitosan nanocomposite hydrogels for wound dressing applications
This study investigates nanocomposite hydrogels reinforced with hyaluronan-quercetin‑silver nanoparticles intercalated halloysite clay (HAQ-Hal-Ag) for potential application as wound dressings. HAQ-Hal-Ag (at 1, 3, and 5 wt%) was incorporated into a fungal carboxymethyl chitosan (FC)/polyacrylamide...
Saved in:
Published in: | International journal of biological macromolecules 2025-01, Vol.284 (Pt 1), p.137849, Article 137849 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates nanocomposite hydrogels reinforced with hyaluronan-quercetin‑silver nanoparticles intercalated halloysite clay (HAQ-Hal-Ag) for potential application as wound dressings. HAQ-Hal-Ag (at 1, 3, and 5 wt%) was incorporated into a fungal carboxymethyl chitosan (FC)/polyacrylamide (PAM) network (FC-PAM) using methylene bisacrylamide (MBA) as the crosslinker and ammonium persulfate (APS) as the initiator. Various physicochemical analyses were performed to characterize the resulting hydrogels. The compressive strength of the nanocomposite hydrogels exhibited a proportional increase with increasing HAQ-Hal-Ag content, reaching a remarkable 1.04 MPa for hydrogels containing 5 wt% HAQ-Hal-Ag. Additionally, the hydrogels displayed highly porous structures with excellent swelling capacity. Importantly, they exhibited exceptional antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Furthermore, cytotoxicity assays revealed high cell viability and proliferation rates, confirming the biocompatibility of these hydrogels with human dermal fibroblasts. These findings suggest significant promise for the nanocomposite hydrogels as wound dressing materials due to their outstanding biocompatibility, impressive compressive strength, and potent antibacterial activity. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.137849 |