Loading…
Optimization of natural frequencies of bidirectional functionally graded beams
We propose a methodology to optimize the natural frequencies of functionally graded structures by tailoring their material distribution. The element-free Galerkin method is used to analyze the two-dimensional steady-state free and forced vibration of functionally graded beams. To optimize the materi...
Saved in:
Published in: | Structural and multidisciplinary optimization 2006-12, Vol.32 (6), p.473-484 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a methodology to optimize the natural frequencies of functionally graded structures by tailoring their material distribution. The element-free Galerkin method is used to analyze the two-dimensional steady-state free and forced vibration of functionally graded beams. To optimize the material composition, the spatial distribution of volume fractions of the material constituents is defined using piecewise bicubic interpolation of volume fraction values that are specified at a finite number of grid points. Subsequently, we use a real-coded genetic algorithm to optimize the volume fraction distribution for three model problems. In the first problem, we seek material distributions that maximize each of the first three natural frequencies of a functionally graded beam. The goal of the second model problem is to minimize the mass of a functionally graded beam while constraining its natural frequencies to lie outside certain prescribed frequency bands. The last problem aims to minimize the mass of a functionally graded beam by simultaneously optimizing its thickness and material distribution such that the fundamental frequency is greater than a prescribed value. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-006-0022-1 |