Loading…

Artificial neural network models of the rumen fermentation pattern in dairy cattle

The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2008-03, Vol.60 (2), p.226-238
Main Authors: Craninx, M., Fievez, V., Vlaeminck, B., De Baets, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objectives of this study were: (1) to predict the rumen fermentation pattern from milk fatty acids using a machine learning technique, i.e. artificial neural networks (ANN) combined with feature selection and (2) to compare the prediction accuracy of the resulting model to that of a statistical multi-linear regression model, based on odd and branched chain milk fatty acids. Data were collected from 10 experiments with rumen fistulated dairy cows, resulting in a dataset of 138 observations. Feature selection was based on correlation and principal component analysis, and background physiological knowledge. Different ANN architectures and training algorithms were assessed. The evaluation of the model performance, based on the test dataset, showed a root mean square prediction error, expressed relative to the observed mean, of 2.65%, 7.67% and 7.61% of the observed mean for acetate, propionate and butyrate, respectively. Compared to a multi-linear regression model, the ANN revealed not to perform significantly better. However, the results confirm that milk fatty acids have great potential to predict molar proportions of individual volatile fatty acids in the rumen.
ISSN:0168-1699
1872-7107
DOI:10.1016/j.compag.2007.08.005