Loading…
Quantification and Simulation of Particle Kinematics and Local Strains in Granular Materials Using X-Ray Tomography Imaging and Discrete-Element Method
Microfeatures of granular materials have significant effects on their macrobehaviors. Unfortunately, three-dimensional (3D) quantitative measurements of microfeatures are rare in literature because of the limitations of conventional techniques in obtaining microquantities such as microdisplacements...
Saved in:
Published in: | Journal of engineering mechanics 2008-02, Vol.134 (2), p.143-154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microfeatures of granular materials have significant effects on their macrobehaviors. Unfortunately, three-dimensional (3D) quantitative measurements of microfeatures are rare in literature because of the limitations of conventional techniques in obtaining microquantities such as microdisplacements and local strains. This paper presents a new method for quantifying the particle kinematics and local strains for a soft confined compression test using X-ray computed tomography and compares the experimental measurements with the simulated results using the discrete-element method (DEM). The experimental method can identify and recognize 3D individual particles automatically, which is essential for quantifying particle kinematics and local strains. 3D DEM simulations of the soft confined compression test were performed by using spherical particles and irregular particles. The simulated global deformations and particle translations that were based on irregular particles showed better agreement with the experimental measurements than those that were based on spherical particles. The simulated movements of spherical particles were more erratic, and the material composed of spherical particles showed larger vertical contraction and radial dilation. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)0733-9399(2008)134:2(143) |