Loading…

Application of generalized differential transform method to multi-order fractional differential equations

In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2008-10, Vol.13 (8), p.1642-1654
Main Authors: Erturk, Vedat Suat, Momani, Shaher, Odibat, Zaid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y ( μ ) ( t ) = f ( t , y ( t ) , y ( β 1 ) ( t ) , y ( β 2 ) ( t ) , … , y ( β n ) ( t ) ) with μ > β n > β n - 1 > … > β 1 > 0 , combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2007.02.006