Loading…
Prediction of ground motion in the Osaka sedimentary basin associated with the hypothetical Nankai earthquake
We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1- to 3-km thickness of sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband ground motions likely to be produced by the hypothetic...
Saved in:
Published in: | Journal of seismology 2008-04, Vol.12 (2), p.185-195 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1- to 3-km thickness of sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband ground motions likely to be produced by the hypothetical Nankai earthquake: the earthquake expected to give rise to the most severe long-period ground motion within the basin. For the simulation, we constructed multiscale heterogeneous source models based on the Central Disaster Management Council of Japan (CDMC) source model and adopted a hybrid computation method in which long-period motion and short-period motion are computed using a 3-D finite difference method and the stochastic Green’s function method, respectively. In computing long-period motions, we used a 3-D structure model of the crust and the Osaka sedimentary basin. The ground motions are estimated to have peak velocities of 50–90 cm/s, prolonged durations exceeding 300 s, and long predominant periods of 5–10 s in the area with great thickness of sediments. The predominant periods are in agreement with an approximate evaluation by 4
H
/
V
s
where
H
and
V
s
are the thickness of the sediment and the average S wave velocity, respectively. |
---|---|
ISSN: | 1383-4649 1573-157X |
DOI: | 10.1007/s10950-007-9077-8 |