Loading…
Variational formulations for scattering in a three-dimensional acoustic waveguide
Variational formulations for direct time‐harmonic scattering problems in a three‐dimensional waveguide are formulated and analyzed. We prove that the operators defined by the corresponding forms satisfy a Gårding inequality in adequately chosen spaces of test and trial functions and depend analytica...
Saved in:
Published in: | Mathematical methods in the applied sciences 2008-05, Vol.31 (7), p.821-847 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Variational formulations for direct time‐harmonic scattering problems in a three‐dimensional waveguide are formulated and analyzed. We prove that the operators defined by the corresponding forms satisfy a Gårding inequality in adequately chosen spaces of test and trial functions and depend analytically on the wavenumber except at the modal numbers of the waveguide. It is also shown that these operators are strictly coercive if the wavenumber is small enough. It follows that these scattering problems are uniquely solvable except possibly for an infinite series of exceptional values of the wavenumber with no finite accumulation point. Furthermore, two geometric conditions for an obstacle are given, under which uniqueness of solution always holds in the case of a Dirichlet problem. Copyright © 2007 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.947 |