Loading…

Variational formulations for scattering in a three-dimensional acoustic waveguide

Variational formulations for direct time‐harmonic scattering problems in a three‐dimensional waveguide are formulated and analyzed. We prove that the operators defined by the corresponding forms satisfy a Gårding inequality in adequately chosen spaces of test and trial functions and depend analytica...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2008-05, Vol.31 (7), p.821-847
Main Authors: Arens, Tilo, Gintides, Drossos, Lechleiter, Armin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Variational formulations for direct time‐harmonic scattering problems in a three‐dimensional waveguide are formulated and analyzed. We prove that the operators defined by the corresponding forms satisfy a Gårding inequality in adequately chosen spaces of test and trial functions and depend analytically on the wavenumber except at the modal numbers of the waveguide. It is also shown that these operators are strictly coercive if the wavenumber is small enough. It follows that these scattering problems are uniquely solvable except possibly for an infinite series of exceptional values of the wavenumber with no finite accumulation point. Furthermore, two geometric conditions for an obstacle are given, under which uniqueness of solution always holds in the case of a Dirichlet problem. Copyright © 2007 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.947