Loading…
Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process
Laser-assisted mechanical micromachining (LAMM) is a micro-cutting method that employs highly localized thermal softening of the material by continuous wave laser irradiation focused in front of a miniature cutting tool. However, since it is a heat-assisted process, it can induce a detrimental heat-...
Saved in:
Published in: | International journal of machine tools & manufacture 2008-07, Vol.48 (9), p.994-1004 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Laser-assisted mechanical micromachining (LAMM) is a micro-cutting method that employs highly localized thermal softening of the material by continuous wave laser irradiation focused in front of a miniature cutting tool. However, since it is a heat-assisted process, it can induce a detrimental heat-affected zone (HAZ) in the part. This paper focuses on characterization and prediction of the HAZ produced in a LAMM-based micro-grooving process. The heat-affected zone generated by laser heating of H-13 mold steel (42 HRC) at different laser scanning speeds is analyzed for changes in microstructure and microhardness. A 3-D transient finite element model for a moving Gaussian laser heat source is developed to predict the temperature distribution in the workpiece material. The model prediction error is found to be in the 5–15% range with most values falling within 10% of the measured temperatures. The predicted temperature distribution is correlated with the HAZ and a critical temperature range (840–890
°C) corresponding to the maximum depth of the HAZ is identified using a combination of metallography, hardness testing, and thermal modeling. |
---|---|
ISSN: | 0890-6955 1879-2170 |
DOI: | 10.1016/j.ijmachtools.2008.01.004 |