Loading…
A comparision of interpolation methods for producing digital elevation models at the field scale
Digital elevation models have been used in many applications since they came into use in the late 1950s. It is an essential tool for applications that are concerned with the Earth's surface such as hydrology, geology, cartography, geomorphology, engineering applications, landscape architecture...
Saved in:
Published in: | Earth surface processes and landforms 2009-03, Vol.34 (3), p.366-376 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital elevation models have been used in many applications since they came into use in the late 1950s. It is an essential tool for applications that are concerned with the Earth's surface such as hydrology, geology, cartography, geomorphology, engineering applications, landscape architecture and so on. However, there are some differences in assessing the accuracy of digital elevation models for specific applications. Different applications require different levels of accuracy from digital elevation models. In this study, the magnitudes and spatial patterning of elevation errors were therefore examined, using different interpolation methods. Measurements were performed with theodolite and levelling. Previous research has demonstrated the effects of interpolation methods and the nature of errors in digital elevation models obtained with indirect survey methods for small‐scale areas. The purpose of this study was therefore to investigate the size and spatial patterning of errors in digital elevation models obtained with direct survey methods for large‐scale areas, comparing Inverse Distance Weighting, Radial Basis Functions and Kriging interpolation methods to generate digital elevation models. The study is important because it shows how the accuracy of the digital elevation model is related to data density and the interpolation algorithm used. Cross validation, split‐sample and jack‐knifing validation methods were used to evaluate the errors. Global and local spatial auto‐correlation indices were then used to examine the error clustering. Finally, slope and curvature parameters of the area were modelled depending on the error residuals using ordinary least regression analyses. In this case, the best results were obtained using the thin plate spline algorithm. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0197-9337 1096-9837 |
DOI: | 10.1002/esp.1731 |