Loading…
Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence
The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-differen...
Saved in:
Published in: | Journal of computational physics 2009-04, Vol.228 (6), p.2266-2281 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2008.12.010 |