Loading…
Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence
The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-differen...
Saved in:
Published in: | Journal of computational physics 2009-04, Vol.228 (6), p.2266-2281 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623 |
container_end_page | 2281 |
container_issue | 6 |
container_start_page | 2266 |
container_title | Journal of computational physics |
container_volume | 228 |
creator | Bona, C. Bona-Casas, C. Terradas, J. |
description | The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations. |
doi_str_mv | 10.1016/j.jcp.2008.12.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33277139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999108006335</els_id><sourcerecordid>33277139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</originalsourceid><addsrcrecordid>eNp90DtPIzEQwHELHRK5wAeg2wZEs8uMvU-uOqJ7IEWi4VFazuwscbRZBzsJyrfHIYiSyoV_M7b-QpwjZAhYXi-yBa0yCVBnKDNAOBIjhAZSWWH5Q4wAJKZN0-CJ-BnCAiIs8noknqd2YOOTuX2Zp56D6zdr64Yk0JyXHJLOxbvdiv3M9ZYSckNgvzUfpjdv4SZ5eLpNhs2SvSXTJ7y1LQ_Ep-K4M33gs89zLB7__nmY_E-n9__uJr-nKeUqX6dFVxRtxQQzMoqaHE3JrOqZqdm0TCr-sa5kB6WBqjZU5lQSc45FYyiflVKNxeVh78q71w2HtV7aQNz3ZmC3CVopWVWomgivvoUItZRQQoOR4oGSdyF47vTK26Xxu4j0vrZe6Fhb72trlDrWjjMXn-tNiB06bway4WtQoqwKiSq6XwfHMcrWsteB7D5Yaz3TWrfOfvPKO00slbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082206091</pqid></control><display><type>article</type><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><source>Elsevier</source><creator>Bona, C. ; Bona-Casas, C. ; Terradas, J.</creator><creatorcontrib>Bona, C. ; Bona-Casas, C. ; Terradas, J.</creatorcontrib><description>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.12.010</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algorithms ; Battery ; Burgers equation ; Computational techniques ; Computer simulation ; Exact sciences and technology ; Finite difference method ; Fluxes ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Numerical methods ; Physics</subject><ispartof>Journal of computational physics, 2009-04, Vol.228 (6), p.2266-2281</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</citedby><cites>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21275213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bona, C.</creatorcontrib><creatorcontrib>Bona-Casas, C.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><title>Journal of computational physics</title><description>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</description><subject>Algorithms</subject><subject>Battery</subject><subject>Burgers equation</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluxes</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90DtPIzEQwHELHRK5wAeg2wZEs8uMvU-uOqJ7IEWi4VFazuwscbRZBzsJyrfHIYiSyoV_M7b-QpwjZAhYXi-yBa0yCVBnKDNAOBIjhAZSWWH5Q4wAJKZN0-CJ-BnCAiIs8noknqd2YOOTuX2Zp56D6zdr64Yk0JyXHJLOxbvdiv3M9ZYSckNgvzUfpjdv4SZ5eLpNhs2SvSXTJ7y1LQ_Ep-K4M33gs89zLB7__nmY_E-n9__uJr-nKeUqX6dFVxRtxQQzMoqaHE3JrOqZqdm0TCr-sa5kB6WBqjZU5lQSc45FYyiflVKNxeVh78q71w2HtV7aQNz3ZmC3CVopWVWomgivvoUItZRQQoOR4oGSdyF47vTK26Xxu4j0vrZe6Fhb72trlDrWjjMXn-tNiB06bway4WtQoqwKiSq6XwfHMcrWsteB7D5Yaz3TWrfOfvPKO00slbQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Bona, C.</creator><creator>Bona-Casas, C.</creator><creator>Terradas, J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><author>Bona, C. ; Bona-Casas, C. ; Terradas, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Battery</topic><topic>Burgers equation</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluxes</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bona, C.</creatorcontrib><creatorcontrib>Bona-Casas, C.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bona, C.</au><au>Bona-Casas, C.</au><au>Terradas, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</atitle><jtitle>Journal of computational physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>228</volume><issue>6</issue><spage>2266</spage><epage>2281</epage><pages>2266-2281</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.12.010</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2009-04, Vol.228 (6), p.2266-2281 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_33277139 |
source | Elsevier |
subjects | Algorithms Battery Burgers equation Computational techniques Computer simulation Exact sciences and technology Finite difference method Fluxes Hyperbolic conservation laws Mathematical analysis Mathematical methods in physics Mathematical models Numerical methods Physics |
title | Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20high-resolution%20schemes%20for%20hyperbolic%20conservation%20laws:%20TVB%20numerical%20evidence&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bona,%20C.&rft.date=2009-04-01&rft.volume=228&rft.issue=6&rft.spage=2266&rft.epage=2281&rft.pages=2266-2281&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2008.12.010&rft_dat=%3Cproquest_cross%3E33277139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082206091&rft_id=info:pmid/&rfr_iscdi=true |