Loading…

Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence

The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-differen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2009-04, Vol.228 (6), p.2266-2281
Main Authors: Bona, C., Bona-Casas, C., Terradas, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623
cites cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623
container_end_page 2281
container_issue 6
container_start_page 2266
container_title Journal of computational physics
container_volume 228
creator Bona, C.
Bona-Casas, C.
Terradas, J.
description The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.
doi_str_mv 10.1016/j.jcp.2008.12.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33277139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999108006335</els_id><sourcerecordid>33277139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</originalsourceid><addsrcrecordid>eNp90DtPIzEQwHELHRK5wAeg2wZEs8uMvU-uOqJ7IEWi4VFazuwscbRZBzsJyrfHIYiSyoV_M7b-QpwjZAhYXi-yBa0yCVBnKDNAOBIjhAZSWWH5Q4wAJKZN0-CJ-BnCAiIs8noknqd2YOOTuX2Zp56D6zdr64Yk0JyXHJLOxbvdiv3M9ZYSckNgvzUfpjdv4SZ5eLpNhs2SvSXTJ7y1LQ_Ep-K4M33gs89zLB7__nmY_E-n9__uJr-nKeUqX6dFVxRtxQQzMoqaHE3JrOqZqdm0TCr-sa5kB6WBqjZU5lQSc45FYyiflVKNxeVh78q71w2HtV7aQNz3ZmC3CVopWVWomgivvoUItZRQQoOR4oGSdyF47vTK26Xxu4j0vrZe6Fhb72trlDrWjjMXn-tNiB06bway4WtQoqwKiSq6XwfHMcrWsteB7D5Yaz3TWrfOfvPKO00slbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082206091</pqid></control><display><type>article</type><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><source>Elsevier</source><creator>Bona, C. ; Bona-Casas, C. ; Terradas, J.</creator><creatorcontrib>Bona, C. ; Bona-Casas, C. ; Terradas, J.</creatorcontrib><description>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.12.010</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Algorithms ; Battery ; Burgers equation ; Computational techniques ; Computer simulation ; Exact sciences and technology ; Finite difference method ; Fluxes ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Numerical methods ; Physics</subject><ispartof>Journal of computational physics, 2009-04, Vol.228 (6), p.2266-2281</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</citedby><cites>FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21275213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bona, C.</creatorcontrib><creatorcontrib>Bona-Casas, C.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><title>Journal of computational physics</title><description>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</description><subject>Algorithms</subject><subject>Battery</subject><subject>Burgers equation</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluxes</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90DtPIzEQwHELHRK5wAeg2wZEs8uMvU-uOqJ7IEWi4VFazuwscbRZBzsJyrfHIYiSyoV_M7b-QpwjZAhYXi-yBa0yCVBnKDNAOBIjhAZSWWH5Q4wAJKZN0-CJ-BnCAiIs8noknqd2YOOTuX2Zp56D6zdr64Yk0JyXHJLOxbvdiv3M9ZYSckNgvzUfpjdv4SZ5eLpNhs2SvSXTJ7y1LQ_Ep-K4M33gs89zLB7__nmY_E-n9__uJr-nKeUqX6dFVxRtxQQzMoqaHE3JrOqZqdm0TCr-sa5kB6WBqjZU5lQSc45FYyiflVKNxeVh78q71w2HtV7aQNz3ZmC3CVopWVWomgivvoUItZRQQoOR4oGSdyF47vTK26Xxu4j0vrZe6Fhb72trlDrWjjMXn-tNiB06bway4WtQoqwKiSq6XwfHMcrWsteB7D5Yaz3TWrfOfvPKO00slbQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Bona, C.</creator><creator>Bona-Casas, C.</creator><creator>Terradas, J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</title><author>Bona, C. ; Bona-Casas, C. ; Terradas, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Battery</topic><topic>Burgers equation</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluxes</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bona, C.</creatorcontrib><creatorcontrib>Bona-Casas, C.</creatorcontrib><creatorcontrib>Terradas, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bona, C.</au><au>Bona-Casas, C.</au><au>Terradas, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence</atitle><jtitle>Journal of computational physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>228</volume><issue>6</issue><spage>2266</spage><epage>2281</epage><pages>2266-2281</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The Osher–Chakrabarthy family of linear flux-modification schemes is considered. Improved lower bounds on the compression factors are provided, which suggest the viability of using the unlimited version. The LLF flux formula is combined with these schemes in order to obtain efficient finite-difference algorithms. The resulting schemes are applied to a battery of numerical tests, going from advection and Burgers equations to Euler and MHD equations, including the double Mach reflection and the Orszag–Tang 2D vortex problem. Total-variation-bounded (TVB) behavior is evident in all cases, even with time-independent upper bounds. The proposed schemes, however, do not deal properly with compound shocks, arising from non-convex fluxes, as shown by Buckley–Leverett test simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.12.010</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2009-04, Vol.228 (6), p.2266-2281
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_33277139
source Elsevier
subjects Algorithms
Battery
Burgers equation
Computational techniques
Computer simulation
Exact sciences and technology
Finite difference method
Fluxes
Hyperbolic conservation laws
Mathematical analysis
Mathematical methods in physics
Mathematical models
Numerical methods
Physics
title Linear high-resolution schemes for hyperbolic conservation laws: TVB numerical evidence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20high-resolution%20schemes%20for%20hyperbolic%20conservation%20laws:%20TVB%20numerical%20evidence&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Bona,%20C.&rft.date=2009-04-01&rft.volume=228&rft.issue=6&rft.spage=2266&rft.epage=2281&rft.pages=2266-2281&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2008.12.010&rft_dat=%3Cproquest_cross%3E33277139%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-5f55d7ec0bca3c941a6ee38ba8eadec3548872f06a078ac64c6cee4159ac4b623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082206091&rft_id=info:pmid/&rfr_iscdi=true