Loading…
Perfect GMV-Algebras
The focus of this article is the class of perfect GMV-algebras, which includes all noncommutative analogs of perfect MV-algebras. As in the commutative case, we show that each perfect GMV-algebra possesses a single negation, it is generated by its infinitesimal elements, and can be uniquely realized...
Saved in:
Published in: | Communications in algebra 2008-04, Vol.36 (4), p.1221-1249 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The focus of this article is the class of perfect GMV-algebras, which includes all noncommutative analogs of perfect MV-algebras. As in the commutative case, we show that each perfect GMV-algebra possesses a single negation, it is generated by its infinitesimal elements, and can be uniquely realized as an interval in a lexicographical product of the lattice-ordered group of integers and an arbitrary lattice-ordered group. Further, we establish that the category of perfect GMV-algebras is equivalent to the category of all lattice-ordered groups. The variety of GMV-algebras generated by the class of perfect GMV-algebras plays a key role in our considerations. Among other results, we describe a finite equational basis for this variety and prove that it fails to satisfy the amalgamation property. In fact, we show that uncountably many of its subvarieties fail this property. |
---|---|
ISSN: | 0092-7872 1532-4125 |
DOI: | 10.1080/00927870701862852 |