Loading…

Dynamic rupture of polymer–metal bilayer plates

Recent theoretical assessments of metal/polymer bilayers indicate a potentially significant delay in the onset of ductile failure modes, especially under dynamic loading, due to strain hardening of the polymer. The response of copper/polyurethane bilayers under dynamic and quasi-static loadings is i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2008-08, Vol.45 (16), p.4407-4426
Main Authors: McShane, G.J., Stewart, C., Aronson, M.T., Wadley, H.N.G., Fleck, N.A., Deshpande, V.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent theoretical assessments of metal/polymer bilayers indicate a potentially significant delay in the onset of ductile failure modes, especially under dynamic loading, due to strain hardening of the polymer. The response of copper/polyurethane bilayers under dynamic and quasi-static loadings is investigated via static tensile, static bulge forming and dynamic bulge forming tests. Two polyurethanes PU1 and PU2 were chosen with a significant contrast in stiffness and ductility: PU1 has a glass transition temperature T g close to −56 °C and at room temperature it has a low modulus, low strength and a high tensile failure strain. In contrast, PU2 has a T g of 49 °C and at room temperature it has a high modulus and strength but a much smaller tensile failure strain. In most of the tests, the polymer coatings were approximately twice the thickness of the metal layer. Under static loadings (tensile and bulge forming) the PU2 bilayer outperformed the uncoated metal plate of equal mass while the PU1 bilayer had a performance inferior to the equivalent uncoated plate. We attribute this to the fact that the PU2 retards the necking of the copper layer and thus increases its energy absorption capacity while the PU1 coating provides no such synergistic effect. The dynamic bulge forming tests indicate that on an equal mass basis, the dynamic performance of the PU2 bilayers with a weakly bonded polymer coating were comparable to the uncoated plates but intriguingly, when the PU2 was strongly adhered to the copper plates the performance of these bilayers was inferior to that of the uncoated plates. Thus, the coatings do not provide dynamic performance benefits on an equal mass basis. However, it is shown that increasing the mass of a plate by adding a polyurethane layer can improve the performance for a given total blast impulse. Given the ease of applying polyurethane coatings they may provide a practical solution to enhancing the blast resistance of existing metallic structures.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2008.03.017