Loading…

Deformation of Quaternary strata and its relationship to crustal folds and faults, south-central Puget Lowland, Washington State

Folded Quaternary deposits across the south-central Puget Lowland, an area just south of the Seattle fault that extends across the Seattle uplift and its boundary with the adjacent Tacoma basin, provide increased resolution of the character and rate of crustal deformation. They also constrain altern...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2004-06, Vol.32 (6), p.505-508
Main Authors: Booth, Derek B, Troost, Kathy Goetz, Hagstrum, Jonathan T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Folded Quaternary deposits across the south-central Puget Lowland, an area just south of the Seattle fault that extends across the Seattle uplift and its boundary with the adjacent Tacoma basin, provide increased resolution of the character and rate of crustal deformation. They also constrain alternative, and partly incompatible, views of crustal structure previously suggested by geophysical investigations. Tectonic deformation has been progressive for at least the past few hundred thousand years: older sediments display greater deformation than the youngest exposed deposits in the study area. Strain rates across the Seattle uplift have probably been between 0.25 and 1.0 mm/yr during this period, accounting for ∼10% of the total strain shortening of the western Washington crust. The Seattle uplift displays Quaternary deformation across its full north-south extent and has structural discontinuities at both its northern and southern boundaries. Previous workers have already established the faulted nature of its northern boundary; exposed Quaternary strata across its southern boundary display intense folding, the location of which generally corresponds to the projection of a "Tacoma fault" suggested by prior geophysical studies.
ISSN:0091-7613
1943-2682
DOI:10.1130/G20355.1