Loading…
Partial classification of heteroclinic behaviour associated with the perturbation of hexagonal planforms
Physical systems often exhibit pattern-forming instabilities. Equivariant bifurcation theory is often used to investigate the existence and stability of spatially doubly periodic solutions with respect to the hexagonal lattice. Previous studies have focused on the six- and twelve-dimensional represe...
Saved in:
Published in: | Dynamical systems (London, England) England), 2008-06, Vol.23 (2), p.137-162 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical systems often exhibit pattern-forming instabilities. Equivariant bifurcation theory is often used to investigate the existence and stability of spatially doubly periodic solutions with respect to the hexagonal lattice. Previous studies have focused on the six- and twelve-dimensional representation of the hexagonal lattice where the symmetry of the model is perfect. Here, perturbation of group orbits of translation-free axial planforms in the six- and twelve-dimensional representations is considered. This problem is studied via the abstract action of the symmetry group of the perturbation on the group orbit of the planform. A partial classification for the behaviour of the group orbits is obtained, showing the existence of homoclinic and heteroclinic cycles between equilibria. |
---|---|
ISSN: | 1468-9367 1468-9375 |
DOI: | 10.1080/14689360601070771 |