Loading…
Application of infrared thermal testing and mathematical models for studying the temperature distributions of the high-speed waterjet
In this paper, infrared thermal testing and mathematical models for studying the temperature distributions of the high-speed waterjet in air are presented. The waterjet temperature distributions are investigated under different pressures. We describe the experiments in which we apply the infrared th...
Saved in:
Published in: | Journal of materials processing technology 2009-05, Vol.209 (9), p.4360-4365 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, infrared thermal testing and mathematical models for studying the temperature distributions of the high-speed waterjet in air are presented. The waterjet temperature distributions are investigated under different pressures. We describe the experiments in which we apply the infrared thermal imager to obtain the infrared thermal images of the high-speed waterjet. By denoising these infrared thermal images and fitting data, we obtain the isotherms and the temperature variation curves as a function of the distances form the nozzle outlet. In order to calculate the shear stress within the water air boundary layers, multi-phase models are developed. Due to the sophisticated patterns of the multi-component model, the numerical computation is used to obtain the velocity and temperature distribution of the waterjet. The results indicate that the temperature distributions were similar when the pressure is greater than the threshold pressure. This fact is proved by further theoretical computation and experiments data. The paper revealed that the velocity profiles were similar to the temperature profiles in the radial direction at the same cross-sections. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2008.11.010 |