Loading…

General Solution of Stability Problem for Plane Linear Switched Systems and Differential Inclusions

Characterization and control of stability of switched dynamical systems and differential inclusions have attracted significant attention in the recent past. The most of the current results for this problem are obtained by application of the Lyapunov function method which provides sufficient but freq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2008-10, Vol.53 (9), p.2149-2153
Main Authors: Zevin, A.A., Pinsky, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Characterization and control of stability of switched dynamical systems and differential inclusions have attracted significant attention in the recent past. The most of the current results for this problem are obtained by application of the Lyapunov function method which provides sufficient but frequently over conservative stability conditions. For planar systems, practically verifiable necessary and sufficient conditions are found only for switched systems with two subsystems. This paper provides explicit necessary and sufficient conditions for asymptotic stability of switched systems and differential inclusions with arbitrary number of subsystems; these conditions turned out to be identical for the both classes of systems. A precise upper bound for the number of switching points in a periodic solution, corresponding to the break of stability, is found. It is shown that, for a switched system, the break of stability may also occur on a solution with infinitely fast switching (chattering) between some two subsystems.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2008.930191