Loading…

Integrable solutions of a nonlinear functional integral equation on an unbounded interval

In this paper we prove the existence of integrable solutions of a generalized functional-integral equation, which includes many key integral and functional equations that arise in nonlinear analysis and its applications. This is achieved by means of an improvement of a Krasnosel’skii type fixed poin...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2009-11, Vol.71 (9), p.4131-4136
Main Author: Aziz Taoudi, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we prove the existence of integrable solutions of a generalized functional-integral equation, which includes many key integral and functional equations that arise in nonlinear analysis and its applications. This is achieved by means of an improvement of a Krasnosel’skii type fixed point theorem recently proved by K. Latrach and the author. The result presented in this paper extends the corresponding result of [J. Banas, A. Chlebowicz, On existence of integrable solutions of a functional integral equation under Carathéodory condition, Nonlinear Anal. (2008) doi:10.1016/j.na.2008.04.020]. An example which shows the importance and the applicability of our result is also included.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2009.02.072