Loading…
Synthesis and foaming of water expandable polystyrene-activated carbon (WEPSAC)
In this study, water acts as a co-blowing agent to support carbon dioxide (CO2) in the extrusion foaming process of polystyrene (PS) to produce foams with very low density for thermal insulation applications. Herein, we report a simple suspension polymerization method to prepare water expandable pol...
Saved in:
Published in: | Polymer (Guilford) 2009-07, Vol.50 (14), p.3169-3173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, water acts as a co-blowing agent to support carbon dioxide (CO2) in the extrusion foaming process of polystyrene (PS) to produce foams with very low density for thermal insulation applications. Herein, we report a simple suspension polymerization method to prepare water expandable polystyrene (WEPS) based on a PS/water containing activated carbon (AC) composite. AC pre-saturated with water was introduced into the styrene monomer to form a water-in-oil inverse emulsion without emulsifiers. Via suspension polymerization, water expandable PS/AC (WEPSAC) beads could be subsequently obtained. Low density PS foams (∼0.03g/cc) were successfully produced in the CO2 extrusion foaming process using WEPSAC. Because of lower foam density and better IR absorption due to the presence of water containing AC, WEPSAC foams provided a lower thermal conductivity than conventional talc reinforced PS foams.
[Display omitted] |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2009.05.007 |