Loading…
Comparison of light absorption bodies in a photothermic cell
Work on innovative interfaces has led to the development of optopneumatic systems, which can receive an optical control signal and produce a pneumatic output signal. Specifically, the interface discussed here employs what is known as the “photothermic effect” to convert light power into a pneumatic...
Saved in:
Published in: | Mechatronics (Oxford) 2009-04, Vol.19 (3), p.428-433 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Work on innovative interfaces has led to the development of optopneumatic systems, which can receive an optical control signal and produce a pneumatic output signal. Specifically, the interface discussed here employs what is known as the “photothermic effect” to convert light power into a pneumatic signal. This is crucial in developing actuators that are suitable for use in areas involving explosion hazards or electromagnetic interference problems, where electrical devices are not recommended or must be avoided. In this case, the system converts an optical signal into a pneumatic signal thanks to a light absorption body interposed between the optical source and the operating gas. The investigation was carried out using both theoretical and experimental methods. Essentially, its goals were to compare the behavior of light absorption bodies in a photothermic cell, using different materials that ensure a durable, repeatable coating with little sensitivity to disturbance, and to determine the influence of varying the photothermic cell’s geometric dimensions. |
---|---|
ISSN: | 0957-4158 1873-4006 |
DOI: | 10.1016/j.mechatronics.2008.10.002 |