Loading…
Implementing fault-tolerance in real-time programs by automatic program transformations
We present a formal approach to implement fault-tolerance in real-time embedded systems. The initial fault-intolerant system consists of a set of independent periodic tasks scheduled onto a set of fail-silent processors connected by a reliable communication network. We transform the tasks such that,...
Saved in:
Published in: | ACM transactions on embedded computing systems 2008-07, Vol.7 (4), p.1-43 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a formal approach to implement fault-tolerance in real-time embedded systems. The initial fault-intolerant system consists of a set of independent periodic tasks scheduled onto a set of fail-silent processors connected by a reliable communication network. We transform the tasks such that, assuming the availability of an additional spare processor, the system tolerates one failure at a time (transient or permanent). Failure detection is implemented using heartbeating, and failure masking using checkpointing and rollback. These techniques are described and implemented by automatic program transformations on the tasks' programs. The proposed formal approach to fault-tolerance by program transformations highlights the benefits of separation of concerns. It allows us to establish correctness properties and to compute optimal values of parameters to minimize fault-tolerance overhead. We also present an implementation of our method, to demonstrate its feasibility and its efficiency. |
---|---|
ISSN: | 1539-9087 1558-3465 |
DOI: | 10.1145/1376804.1376813 |