Loading…

Enhanced fine particle collection by the application of SMPS energisation

Over the past decade or so the health problems associated with the inhalation of sub micron particles from industrial processes has taken prominence and has lead to the stricter emission legislation, such as the US PM 2.5 approach. Generally most forms of control equipment readily handle and collect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrostatics 2009-05, Vol.67 (2), p.110-116
Main Authors: Parker, Kenneth, Haaland, Arne Thomas, Vik, Frode
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past decade or so the health problems associated with the inhalation of sub micron particles from industrial processes has taken prominence and has lead to the stricter emission legislation, such as the US PM 2.5 approach. Generally most forms of control equipment readily handle and collect particles greater than 1 micron diameter, however, those less than 1 micron diameter are very much more difficult to collect. In the case of electrostatic precipitation, which involves both particle charging and migration under the influence of an electric field, the larger particles, generally greater than 1 micron are charged by collision with the ions and electrons present in the inter electrode area. It will be shown that the charge on these particles is proportional to the radius squared and its migration velocity proportional to the voltage squared, both reducing with particle size. The very small particles however, are charged by a diffusion processes and migrate under the influence of Brownian motion, which increases as the particle size decreases. The result of this is that a typical particle size/efficiency curve indicates a significant penetration window in the 0.8–0.2 micron diameter range, which coincides with the change from collision to diffusion charging of the particles. Because of this penetration window, should an existing precipitator operating under optimum electrical conditions, not comply with fine particle emission requirements, the conventional performance enhancement scenario, since the charging and precipitation operating conditions have been already optimised, would be to increase the precipitator's plate area, a very expensive solution. It will be shown, however, that the replacement of the conventional mains energisation system by an SMPS approach in an existing ESP will enhance the collection efficiency of particles, particularly in the penetration window, as a result of the increase in both operating field voltages and currents. The SMPS approach was applied to a 2 field ESP dealing predominately with sub micron fume, which the Client wished to enhance the performance to enable higher recycle rates, while still complying with his emission permitting. This was initially assessed using PALCPE™ (Proactive Approach to Low-Cost Precipitator Enhancement), which indicated a significant reduction in the fine particle emissions was achievable by operation under SMPS Operation. An SMPS unit was subsequently fitted to the outlet field of th
ISSN:0304-3886
1873-5738
DOI:10.1016/j.elstat.2009.02.010