Loading…

Development of polymer derived carbon coated monolith for liquid adsorption application by response surface methodology

The preparation of polymer derived activated carbon coated monolith is reported. The response surface methodology based on Box–Behnken design is used to find the optimal condition for synthesis of mesoporous carbon. The dominant parameters identified are the carbonization temperature, concentration,...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2009-08, Vol.87 (4), p.591-597
Main Authors: Darmadi, Choong, Thomas S. Y., Chuah, T. G., Yunus, Robiah, Yap, Y. H. Taufiq
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The preparation of polymer derived activated carbon coated monolith is reported. The response surface methodology based on Box–Behnken design is used to find the optimal condition for synthesis of mesoporous carbon. The dominant parameters identified are the carbonization temperature, concentration, and molecular weight of pore former agent. Typical values for BET surface area are 341 m2/g carbon and 20 m2/g supported carbon with pores size distribution in the range of 4–400 nm. The highest pore volume obtained is 182.77 mm3/g supported carbon. Cet article présente un compte rendu de la préparation d'un monolithe revêtu de charbon actif dérivé de polymère. On utilise la méthodologie de la surface de réponse fondée sur le modèle conceptuel de Box–Behnken pour trouver la condition optimale permettant la synthèse du carbone mésoporeux. Les paramètres dominants observés sont la température de carbonisation, la concentration et le poids moléculaire de l'agent de formation de pores. Les valeurs habituelles de l'aire superficielle BET sont de 341 m2/g de carbone et de 20 m2/g de carbone chargé ayant une distribution de la taille des pores variant entre 4 et 400 nm. Le volume poreux le plus élevé obtenu est de 182,77 mm3/g de carbone chargé.
ISSN:0008-4034
1939-019X
DOI:10.1002/cjce.20193