Loading…

Day–night and depth differences in haemolymph melatonin of the Norway lobster, Nephrops norvegicus (L.)

Few studies have been conducted to quantify and understand the role of melatonin in invertebrates, and particularly in crustaceans and in deep-sea animals. In this study, we examined day–night differences in haemolymph melatonin of the burrowing decapod crustacean Nephrops norvegicus (L.) during exp...

Full description

Saved in:
Bibliographic Details
Published in:Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2009-10, Vol.56 (10), p.1894-1905
Main Authors: Aguzzi, J., Sanchez-Pardo, J., García, J.A., Sardà, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Few studies have been conducted to quantify and understand the role of melatonin in invertebrates, and particularly in crustaceans and in deep-sea animals. In this study, we examined day–night differences in haemolymph melatonin of the burrowing decapod crustacean Nephrops norvegicus (L.) during exposure to cycles of monochromatic blue light (480 nm) and darkness cycles of 10 and 0.1 lx. These differential intensity conditions simulate illumination at the depth of the shelf (80–100 m) and of the slope (300–400 m), where these lobster populations are chiefly found in the Western Mediterranean Sea. Our objectives were: (a) to verify the presence of melatonin in the haemolymph of this species using liquid chromatography/tandem mass spectrometry (LC–MS/MS) and fluorescence HPLC (HPLC); and (b) to study the relationship between diel variations in melatonin concentration and locomotor rhythms, in order to examine whether the former influences behaviour. Melatonin was identified in LC–MS/MS by Q1 and Q3 mass peaks at an elution time of 3.7 min, and it was also detected by HPLC. Melatonin concentration was found to be two orders of magnitude higher at 10 lx (4.8±5.3 ng ml −1) than at 0.1 lx (0.06±0.03 ng ml −1). Also, the increase at daytime in 10 lx was absent in 0.1 lx. When the locomotor rhythm of animals exposed to both photoperiod regimes was compared, the diel periodicity was found to be preserved, but the timing of activity shifted from night to day. Extrapolating these data to the field, we interpret our results to mean that locomotor activity preserves its diel character, but not its phase and amplitude, in a bathymetric range where haemolymph melatonin reduces its concentration and rhythmic fluctuation.
ISSN:0967-0637
1879-0119
DOI:10.1016/j.dsr.2009.06.001