Loading…
Depth profiling of coil coating using step-scan photoacoustic FTIR
Photoacoustic (PA) Fourier Transform Infrared Spectroscopy (FTIR) has been demonstrated to be very useful in the analysis of molecular distribution and/or degradation in polymeric materials in a non-destructive manner. Step-scan (SS) PA FTIR has been found to be especially suitable to depth profile...
Saved in:
Published in: | Progress in organic coatings 2009-08, Vol.65 (4), p.469-476 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photoacoustic (PA) Fourier Transform Infrared Spectroscopy (FTIR) has been demonstrated to be very useful in the analysis of molecular distribution and/or degradation in polymeric materials in a non-destructive manner. Step-scan (SS) PA FTIR has been found to be especially suitable to depth profile multi-layered polymer coating/laminate systems. In this current study, the capability of SSPA-FTIR in assessing industrial coil coatings was evaluated. Two multi-layered model coil coating samples were prepared, one had a pigmented Polyvinylidene Fluoride (PVdF) top coat and the other had a clear Polyethylene Terephthalate (PET) laminate film on the surface; both were depth profiled by SSPA-FTIR. The signal magnitude and phase angle were used to obtain a modulation frequency and a phase angle resolved depth profile, respectively. The advantages and disadvantages of the technique were also investigated. Optical microscopy was used to determine the true thicknesses of the PET and PVdF layers from the sample cross-sections. The values were compared with those predicted by SSPA-FTIR. It was found that a precise depth profile was only obtained with the PET sample whereas in the high pigmented coating system, the predicted values were smaller than the true PVdF thickness, possibly due to the high thermal diffusivity of the inorganic pigment. |
---|---|
ISSN: | 0300-9440 1873-331X |
DOI: | 10.1016/j.porgcoat.2009.04.005 |