Loading…
A discontinuous-Galerkin-based immersed boundary method
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user‐defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those...
Saved in:
Published in: | International journal for numerical methods in engineering 2008-10, Vol.76 (4), p.427-454 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user‐defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous‐Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements, boundary locking is avoided and optimal‐order convergence is achieved. This is shown through numerical experiments in reaction–diffusion problems. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.2312 |