Loading…

A novel domain decomposition method for highly oscillating partial differential equations

This paper is devoted to designing a novel domain decomposition method (DDM) for highly oscillating partial differential equations (PDE), especially, where the asymmetric meshless collocation method using radial basis functions (RBF), also Kansa's method is applied for a numerical solutions. It...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements 2009-11, Vol.33 (11), p.1284-1288
Main Authors: Duan, Y., Tang, P.F., Huang, T.Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is devoted to designing a novel domain decomposition method (DDM) for highly oscillating partial differential equations (PDE), especially, where the asymmetric meshless collocation method using radial basis functions (RBF), also Kansa's method is applied for a numerical solutions. It is found that the numerical error become worse when the original solution become more oscillating. To conquer this defect, we use a novel domain decomposition method which is motivated by time parallel algorithm. This DDM is based on a decomposition of computational domain by a coarse centers and a finer distribution of distinct centers. A corrector is designed to obtain better numerical solution after several iteration. Theoretical analysis and numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm.
ISSN:0955-7997
1873-197X
DOI:10.1016/j.enganabound.2009.05.002