Loading…
Kernels and Multiple Windows for Estimation of the Wigner-Ville Spectrum of Gaussian Locally Stationary Processes
This paper treats estimation of the Wigner-Ville spectrum (WVS) of Gaussian continuous-time stochastic processes using Cohen's class of time-frequency representations of random signals. We study the minimum mean square error estimation kernel for locally stationary processes in Silverman's...
Saved in:
Published in: | IEEE transactions on signal processing 2007-01, Vol.55 (1), p.73-84 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper treats estimation of the Wigner-Ville spectrum (WVS) of Gaussian continuous-time stochastic processes using Cohen's class of time-frequency representations of random signals. We study the minimum mean square error estimation kernel for locally stationary processes in Silverman's sense, and two modifications where we first allow chirp multiplication and then allow nonnegative linear combinations of covariances of the first kind. We also treat the equivalent multitaper estimation formulation and the associated problem of eigenvalue-eigenfunction decomposition of a certain Hermitian function. For a certain family of locally stationary processes which parametrizes the transition from stationarity to nonstationarity, the optimal windows are approximately dilated Hermite functions. We determine the optimal coefficients and the dilation factor for these functions as a function of the process family parameter |
---|---|
ISSN: | 1053-587X 1941-0476 1941-0476 |
DOI: | 10.1109/TSP.2006.882076 |