Loading…

Kernels and Multiple Windows for Estimation of the Wigner-Ville Spectrum of Gaussian Locally Stationary Processes

This paper treats estimation of the Wigner-Ville spectrum (WVS) of Gaussian continuous-time stochastic processes using Cohen's class of time-frequency representations of random signals. We study the minimum mean square error estimation kernel for locally stationary processes in Silverman's...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2007-01, Vol.55 (1), p.73-84
Main Authors: Wahlberg, P., Hansson, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper treats estimation of the Wigner-Ville spectrum (WVS) of Gaussian continuous-time stochastic processes using Cohen's class of time-frequency representations of random signals. We study the minimum mean square error estimation kernel for locally stationary processes in Silverman's sense, and two modifications where we first allow chirp multiplication and then allow nonnegative linear combinations of covariances of the first kind. We also treat the equivalent multitaper estimation formulation and the associated problem of eigenvalue-eigenfunction decomposition of a certain Hermitian function. For a certain family of locally stationary processes which parametrizes the transition from stationarity to nonstationarity, the optimal windows are approximately dilated Hermite functions. We determine the optimal coefficients and the dilation factor for these functions as a function of the process family parameter
ISSN:1053-587X
1941-0476
1941-0476
DOI:10.1109/TSP.2006.882076